Generalidades

Generalidades

Generalidades

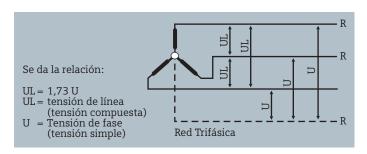
Los motores cumplen con las normas, prescripciones y recomendaciones VDE, ICONTEC e IEC; especialmente pueden citarse:

VDE 0530: Prescripciones para máquinas eléctricas.

<u>Publ. IEC 34-1:</u> Recomendaciones para máquinas eléctricas rotativas

<u>Publ. IEC 144 - Publ. IEC 72-2:</u> Recomendaciones para motores normalizados.

<u>DIN 42673, hojas 1 y 2</u>: Indicación de potencias nominales y medidas de extremos de eje en relación a los tamaños constructivos para motores con ventilación de superticie y rotor en cortocircuito, en ejecución normal.


<u>DIN 42 677, hojas 1 y 2:</u> Indicación de potencias nominales y medidas de extremos de eje en relación a los tamaños constructivos para motores con ventilación de superficie y rotor en cortocircuito, en ejecución normal.

El sistema trifásico

Las redes trifásicas de baja tensión están formadas por los tres conductores activos R, S y T, y pueden ejecutarse con o sin conductor neutro. Los conductores neutros están unidos al centro de la estrella del generador o del transformador correspondiente al lado de baja tensión. Dos conductores activos, o uno de ellos y el neutro, constituyen un sistema de corriente alterna monofásica.

Tensión de servicio

La tensión existente entre dos conductores activos (R, S, T) es la tensión de línea (tensión compuesta o tensión de la red). La tensión que hay entre un conductor activo y el neutro es la tensión de la fase (tensión simple).

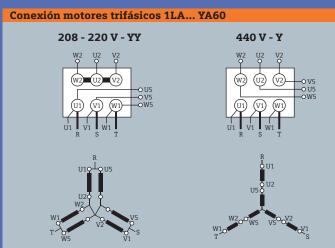
Las tensiones normalizadas para las redes de corriente trifásica, en baja tensión, son las siguientes:

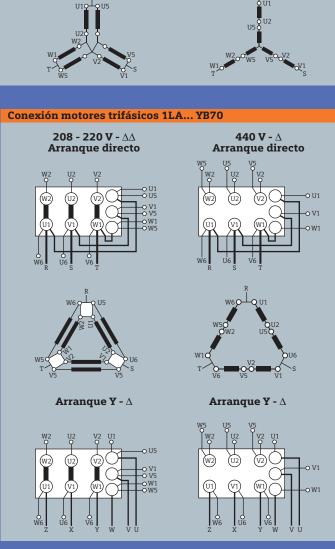
Tensión de línea (V)	Tensión de fase (V)	Denominación usual de la red (V)
208	120	208/120
220	127	220/127
260	150	260/150
380	220	380/220
440	254	440/254

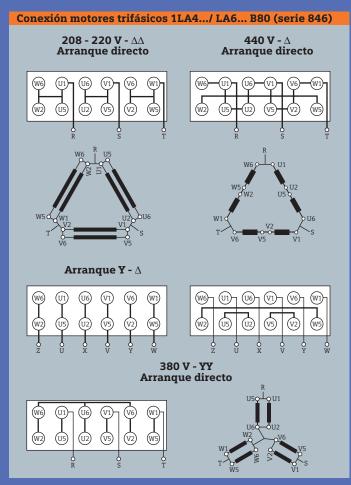
En Colombia las redes públicas y las industriales prestan servicio a la frecuencia de 60Hz.

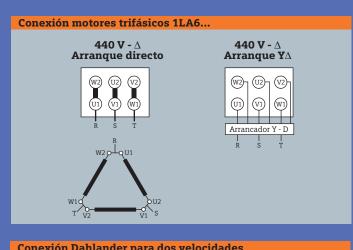
Conexión de motores trifásicos

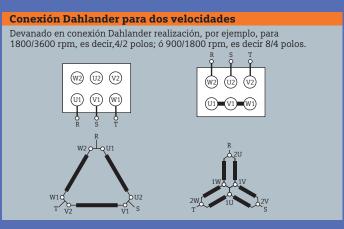
Los motores trifásicos se conectan los tres conductores R,S,T. La tensión nominal del motor en la conexión de servicio tiene que coincidir con la tensión de línea de la red (tensión de servicio).


Conexión de servicio de los motores trifásicos y sus potencias nominales:


Ejecución del devanado (V)	Tensión de la red (V)	Devanado en	% Potencia nominal de placa	Tipo de arranque permitido
220-260∆/440Y¹¹ Tamaños 71-160	220 260 380 440	$egin{array}{c} \Delta \ \Delta \ \Delta \ \Delta \end{array}$	80 100 100 100	Directo/Y-Δ Directo/Y-Δ Directo Directo
208 – 220 YY/ 440 Y Tamaños 71-112	208 220 440	YY YY Y	90 100 100	Directo Directo Directo
208-220 ΔΔ / 440 Δ Tamaños 132-280	208 220 380 440	$\Delta\Delta$ $\Delta\Delta$ YY Δ	90 100 100	Directo/Y-Δ Directo/Y-Δ Directo Directo/Y-Δ


Los motores que se arranquen en estrella-triángulo, la conexión de servicio será en


 Esta ejecución está siendo descontinuada debido a que cada vez son más escasas las redes a 260 V en el país. Se suministra bajo pedido.


220 - 260 V - Δ (W2) (U2) (V2) (U1) (V1) (W1) (W2) (U2) (V2) (U3) (V2) (U3) (V3) (U40 V - Y (W2) (U2) (V2) (U1) (V1) (W1) (W3) (U2) (V2) (U1) (V1) (W1) (W40 V - Y (W2) (U2) (V2) (U1) (V1) (W1) (W3) (U2) (V2) (U1) (V1) (W1) (W40 V - Y (W40 V - Y (W2) (U2) (V2) (U1) (V1) (W1) (W3) (U2) (V2) (U3) (V2) (V3) (W40 V - Y (W4

Generalidades

Sentido de giro de los motores

Los bornes de los motores trifásicos están marcados de tal manera, que el orden alfabético de la denominación de bornes U, V, W, coincide con el orden cronológico si el motor gira hacia la derecha. Esta regla es válida para todas las máquinas, cualquiera que sea su potencia y su tensión. Tratándose de máquinas que sólo sean apropiadas para un sentido de giro, estará éste indicando por una flecha en la placa de características. Debajo de la flecha consta en qué orden se desconectarán los bornes con las fases correlativas de la red.

Se consigue invertir el sentido de giro, intercambiando la conexión de dos conductores de fase.

Antes de poner en marcha el motor debe revisarse la conexión y el sentido de giro.

Puesta a tierra

Los motores tienen en la caja de conexiones un tornillo para empalmar el conductor de tierra. Si se trata de motores, superiores al tamaño constructivo 180, para la puesta a tierra se dispone adicionalmente un borne en la pata o bien en la carcasa.

Variación en la tensión y en la frecuencia de la red

Para motores provistos de devanado normal. Comportamiento de los valores de servicio:

A) Modificación de la tensión sin que varíe la frecuencia

El par de arranque y el par motor máximo varían aproximadamente con el cuadrado de la tensión; la intensidad de arranque se modifica en una relación aproximadamente proporcional a la tensión

Con desviaciones de hasta + 5% respecto a la tensión nominal, se puede suministrar la potencia nominal. En este caso, se podrá sobrepasar en 10°C la temperatura límite.

- a) Aumento de la tensión (suponiendo que la potencia suministrada permanece constante).
- La corriente magnetizante en motores de elevada saturación, limitan el aumento que puede experimentar la tensión; en este caso se encuentran especialmente los motores cuya potencia asciende hasta 3kW, aproximadamente, los cuales ya presentan, a la tensión nominal una intensidad en vacío relativamente elevada.
- 2. La intensidad en el estator, que representa la suma geométrica de la componente de corriente dependiente de la carga y de la corriente magnética, se reduce generalmente. En los motores de hasta 3kW puede predominar la influencia de la corriente magnetizante y, en consecuencia, aumentar la intensidad en el estator.
- 3. El factor de potencia será menor a la misma potencia: el origen de ello es el aumento de la corriente magnetizante y la reducción de la corriente activa.

- 4. Las pérdidas en el rotor y, en general, en el estator serán menores. El calentamiento del motor depende de cómo se modifican las pérdidas en el hierro y en el cobre. Por regla general, se modificará apenas prácticamente con las fluctuaciones normales de la tensión.
- 5. El rendimiento tampoco variará mucho, elevándose o reduciéndose en dependencia de si predomina la reducción en las pérdidas en el cobre o el aumento en la pérdidas en el hierro.
- 6. La velocidad de reducción aumentará ligeramente, por ser menores las pérdidas en el rotor.
- b) Reducción de la tensión.
- 1. La corriente magnetizante, la densidad de flujo, las pérdidas en el hierro y, por lo tanto, en el calentamiento del mismo, serán menores.
- La intensidad en el estator, que representa la suma geométrica de la componente de corriente dependiente de la carga y de la corriente magnetizante, aumenta generalmente. En los motores de hasta 3kW, puede predominar la influencia de la corriente magnetizante y, en consecuencia, reducirse la intensidad en el estator.
- 3. Se mejora el factor de potencia (menor corriente magnetizante, mayor corriente activa).
- Las pérdidas en el rotor y en general las pérdidas en el cobre del estator aumentan. Normalmente, será mayor el calentamiento.
- 5. El rendimiento apenas de modificará.
- 6. La velocidad de rotación descenderá ligeramente.

B) Variación de la frecuencia permaneciendo constante la tensión

Con desviaciones de hasta +5% respecto a la frecuencia nominal, se puede suministrar la potencia nominal.

El valor absoluto del par inicial de arranque y del par máximo varían en relación inversamente proporcional a la frecuencia; la velocidad de rotación varía, aproximadamente, en relación directa con la frecuencia.

Al modificar la frecuencia, las restantes propiedades de funcionamiento del motor varían en relación inversa a como sucede en caso de producirse un cambio en la tensión.

C) Variación de la tensión y de la frecuencia simultáneamente

Si la tensión y la frecuencia aumentan o disminuyen aproximadamente en igual proporción, no varían las condiciones magnéticas. El motor desarrollará el par motor nominal. Aproximadamente, la velocidad de rotación y la potencia varían en la misma proporción que la frecuencia. El par resistente puede no alterarse. Tratándose de frecuencias reducidas, la potencia disminuye en mayor medida, por ser la ventilación menos efectiva.

Potencia

Para elegir un motor adecuado, se tedrán en cuenta los datos siguientes: la carga de trabajo (potencia), la clase de servicio, el curso de ciclo de trabajo, los procesos de arranque, frenado e inversión, la regulación de la velocidad de rotación, las variaciones de la red y la temperatura del medio refrigerante.

Servicio continuo S1

Según VDE 0530, el servicio continuo se define como el servicio prestado bajo carga constante (potencia nominal) durante un tiempo que baste para alcanzar la temperatura de equilibrio térmico.

Según VDE 0530, no se ha previsto que se sobrepase, de una forma permanente, el valor de la potencia nominal. Se admite, sin embargo, una sola vez, una sobrecarga del 150% de la intensidad nominal durante 2 minutos. Si las sobrecargas son superiores, por ejemplo, durante el arranque, el tiempo tendrá que acortarse correspondientemente.

La red de baja tensión se alimenta directamente con un generador o por medio de un transformador conectado, a su vez, a la red de alta tensión. La potencia nominal del generador o del transformador, medida en kVA, tiene que ser, como mínimo, igual a la suma de las potencias aparentes de todos los motores que, en el caso más desfavorable, se encuentren simultáneamente en servicio.

La potencia de los motores que puedan conectarse a la red, considerando la intensidad en el arranque (la potencia aparente de arranque) para una cierta carga previa de la red, está determinada por la diferencia de tensiones que se considera admisible si la alimentación se hace a través de un transformador, y, si la alimentación se realiza por medio de un generador, por el diseño y excitación del mismo.

La potencia nominal del motor debe aproximarse lo más posible a la demanda de potencia de la máquina accionada. Si el motor está dimensionado en exceso, resultan las siguientes consecuencias:

Mayor intensidad de arranque, por lo cual se necesitan fusibles mayores y una mayor sección en el conductor; servicio antieconómico, puesto que el factor de potencia y, bajo ciertas circunstancias, el rendimiento a carga parcial es menor que a plena carga. Entre 3/4 y 1/1 de la carga, varía poco el rendimiento.

El motor toma de la red las siguientes potencias:

Potencia activa:
$$P_w = \frac{P \cdot 100}{\eta}$$

Potencia aparente:
$$P_s = \frac{P \cdot 100}{\eta \cdot \cos \phi}$$

Potencia reactiva:
$$P_b = \frac{P \cdot tg \cdot \phi \cdot 100}{\eta}$$

Siendo

P = potencia suministrada en el eje (kW) P_w = potencia activa (kW) absorbida de la red

 P_s^W = potencia aparente (kWA)

P_b = Potencia reactiva (kVAr) U = Tensión de servicio (V)

I = intensidad en el estator (A)

 η = rendimiento (%)

 $\cos \varphi = \text{factor de potencia}$

Para sistemas trifásicos

Potencia aparente:
$$P_s = \frac{U \cdot I \cdot 1,73}{1000}$$

Intensidad (A)
$$I = \frac{P_w \cdot 1000}{U \cdot \cos \phi \cdot 1,73} = \frac{P \cdot 1000 \cdot 100}{U \cdot \eta \cos \phi \cdot 1,73}$$

Para sistemas monofásicos:

Intensidad (A)
$$I = \frac{P_{w} \cdot 1000}{U \cdot \cos \phi} = \frac{P \cdot 1000 \cdot 100}{U \cdot \eta \cos \phi}$$

Calentamiento y ventilación

La vida útil de un motor es igual a la del aislamiento de sus devanados, si se prescinde del desgaste propio del servicio de los cojinetes, escobillas, anillos rozantes o colector, elementos que se pueden sustituir por otros nuevos sin que, relativamente, se realicen gastos de importancia. Por este motivo, se tendrán especialmente en cuenta las condiciones de servicio que afecten al calentamiento y, por tanto, al aislamiento.

El calentamiento es una consecuencia de las pérdidas originadas en toda transformación de energía (en caso de motores, por ejemplo, transformación de energía eléctrica en energía mecánica). El calentamiento del motor se produce, principalmente, por las pérdidas en el hierro de las chapas magnéticas y del núcleo y por las pérdidas en el cobre del devanado. Estas últimas calientan también el aislamiento de cada conductor. La temperatura admisible del aislamiento utilizado determina fundamentalmente la capacidad de carga del motor.

En la práctica no se indican las pérdidas del motor, sino su rendimiento, el cual se calcula de la siguiente forma:

$$\eta = \frac{Pced. \bullet 100}{Pabs.} = \frac{(Pabs. - Pp\acute{e}rd.) \bullet 100}{Pabs.}$$

$$\eta = \frac{Pced.}{Pced. + Pp\acute{e}rd.} \bullet 100$$

siendo:

 $\begin{array}{lll} \mbox{Pp\'erd.} = \mbox{p\'erdidas totales (kW)} & \mbox{Pced.} = \mbox{potencia (kW)} \\ \mbox{Pabs.} & = \mbox{potencia activa (kW)} & \mbox{que se entrega en el eje} \\ \mbox{tomada de la red} & \mbox{$\eta = $ rendimiento (\%)$} \end{array}$

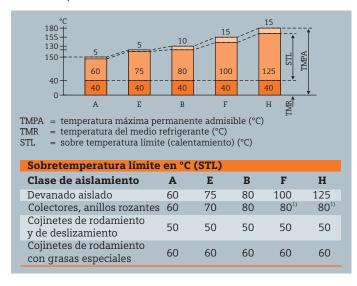
Para las pérdidas, rige, por tanto, lo siguiente

$$Pp\acute{e}rd. = \ \frac{(100 - \eta) \ Pabs.}{100} \ = \ \frac{100 - \eta}{\eta} \ Pced.$$

Generalidades

La energía consumida en pérdidas = pérdidas por tiempo en kWh (calor), se acumula en el motor, de acuerdo a su capacidad térmica, conduciéndose una gran parte al medio ambiente, a través de la ventilación.

Si la carga es constante, se alcanzará un estado de equilibrio cuando la cantidad de calor absorbida sea igual a la disipada, en servicio continuo, una vez que hayan transcurrido de 3 a 5 horas. La sobretemperatura entonces motivada (calentamiento) en los devanados y en el resto de las partes del motor es igual a la diferencia que hay entre la temperatura de la parte considerada y la del medio refrigerante. La sobretemperatura resulta de la relación existente entre las pérdidas que en el motor se transforman en calor y la capacidad de disipación del calor:


$$\begin{split} & ST = \frac{Pp\acute{e}rd.}{Wa} \\ & siendo: \\ & ST = sobretemperatura (°C) \\ & Pp\acute{e}rd. = p\acute{e}rdidas (W) \\ & W_o = capacidad de disipación del calor (W / °C) \end{split}$$

La capacidad de disipación de calor depende de la superficie exterior del motor y de las condiciones de ventilación.

Como la duración del aislamiento de los devanados decrece al aumentar la temperatura (cada 10 °C, aproximadamente en la mitad), según sea el material utilizado habrá que observar los valores límites fijados por VDE 0530 para la temperatura del devanado (temperatura límite). Estos valores están de acuerdo con la respectiva resistencia térmica de los materiales aislantes subdivididos en clases. La duración media prevista es, aproximadamente, de 20 años.

Materiales aislantes y clases de aislamiento

En las normas internacionales se han clasificado los materiales aislantes, incluyendo sus medios impregnados, en clases de aislamiento, habiéndose fijado los correspondientes valores exactos de temperatura.

La temperatura máxima permanente admisible de los diferentes materiales aislantes se compone, como queda representado en la figura anterior, de la temperatura del medio refrigerante, de la sobretemperatura límite y de un suplemento de seguridad. Este último suplemento se ha introducido porque, aplicando el método de la medida usual, o sea la elevación de la resistencia del devanado, no se determina la temperatura en el punto más caliente, sino que se mide el valor medio del calentamiento. Las indicaciones de potencia de los motores están basadas en una temperatura del medio refrigerante de 40°C para todas las clases de aislamiento.

Si el fabricante da garantía, la sobretemperatura límite para aislamiento clase F puede sobrepasarse en 10° C y en 20° C para clase H.

Las sobretemperaturas límite de los colectores, anillos rozantes y cojinetes, rigen para medidas por termómetro, contrariamente a como sucede con las sobretemperaturas límites de los devanados.

- Salvo algunas excepciones, los motores de baja tensión de ejecución normal van provistos de aislamiento que protege el devanado contra la influencia de gases agresivos, vapores y polvo conductor, y permite su instalación en lugares donde la humedad del aire sea muy elevada y tengan lugar frecuentes condensaciones de agua (trópicos, cervecerías, estaciones de bombeo, etc.).
- Los fabricantes ofrecen aislamiento clase F en todos sus motores.
- Para condiciones especiales (por ejemplo, peligros debidos a la acción de aceite, existencia de polvo de fundición) es posible un aislamiento de ejecución especial.

Determinación de la potencia al variar la temperatura del medio refrigerante o la altitud de emplazamiento

La potencia nominal de los motores indicada en la placa de características rige normalmente para las condiciones siguientes: temperatura del medio refrigerante, hasta 40°C; altitud de emplazamiento, hasta 1000 m sobre el nivel del mar. La sobretemperatura límite admitida por VDE 0530, para cada caso, depende del aislamiento utilizado.

Si por razones propias del servicio o por haberse diseñado los motores en conformidad con otras prescripciones diferentes de VDE, se modificasen estos valores, habría que alterar, en general, la potencia.

La variación de potencia se deduce de las tablas siguientes:

Temperatura del medio refrigerante °C	Potencia admisible en % de la potencia nominal	Altura de instalación sobre el nivel del mar (mt.)	Potencia admisible en % de la potencia nominal
30	107	1.000	100
35	104	2.000	94
40	100	3.000	86
45	96	4.000	77
50	92		
55	87	Para temperatu	ra del medio
60	82	refrigerante de	40 °C

Si las temperaturas del medio refrigerante y las alturas de instalación discrepan simultáneamente, deberán multiplicarse los factores indicados, para calcular la potencia admisible.

En caso de que la temperatura máxima del medio refrigerante por encima de los 1.000 m se reduzca en 5°C por cada 1.000 m, no será necesario reducir la potencia, por influencia de la altura.

Temperatura de la carcasa

De acuerdo a las técnicas constructivas modernas, y tomando en cuenta las normas sobre materiales aislantes y clases de aislamiento, los fabricantes de motores utilizan la particularidad de unir lo más cerca posible el paquete del estator a la carcasa, de manera que se evacue rápida y eficientemente el calor interno generado por las diferentes partes constitutivas del motor. Es por esto que el método antiguamente utilizado, para determinar si un motor está sobrecargado o no, tocando con la mano la carcasa, es completamente inadecuado para motores eléctricos modernos.

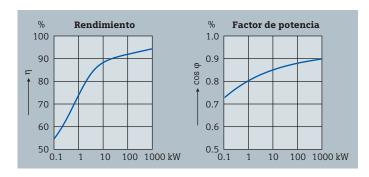
Calentamiento del local

El calentamiento del local depende exclusivamente de las pérdidas, y no de la temperatura de la carcasa. Además, las máquinas accionadas frecuentemente contribuyen al calentamiento del local en mayor proporción que los motores.

En todas las máquinas elaboradoras y modificadoras de materiales, se transforma prácticamente la totalidad de la potencia y accionamiento en calor, y en las máquinas transportadoras de material la transformación se extiende a una gran parte de la potencia de accionamiento. Estas cantidades de calor tienen que ser eliminadas por el aire ambiental en el local de servicio, a no ser que los motores tengan refrigeración independiente, consistente en un sistema de tubos a través de los cuales se evacua el calor directamente al exterior. Habrá que considerar lo siguiente:

$$\begin{array}{ll} V_L &=& \frac{Pp\acute{e}rd. \bullet 0,77}{J} \\ V_L &=& \text{caudal de aire necesario (m3/s)} \\ Pp\acute{e}rd. = & \text{potencia total de p\'erdidas (kW)} \\ \vartheta &=& \text{sobretemperatura admisible del aire (°C)} \\ LW / h = & \frac{V_{Lu}}{J_V} \\ LW / h = & \text{n\'umero de renovaciones de aire por hora} \\ V_{Lu} &=& \text{caudal de aire en circulación (m3/h)} \\ J_V &=& \text{volumen del local (m3)} \\ \end{array}$$

Durante el servicio hay que conseguir un buen abastecimiento de aire fresco para refrigerar los motores. Los motores de gran tamaño provistos de refrigeración interna necesitan un caudal horario de aire que es, aproximadamente, 4 ó 5 veces mayor que su peso propio (a 760 Torr y 20 °C, 1 m3 de aire pesa 1,2 kg). Un motor de 120 kW y 1.800 rpm provisto de refrigeración interna necesita en una hora 2.000 m3 de aire. Tratándose de motores con refrigeración de superficie de la misma potencia y velocidad de rotación, el caudal de aire, es aproximadamente 1,6 veces mayor.


Refrigeración y ventilación

Todos los motores tienen un ventilador exterior cubierto con una caperuza. Independientemente del sentido de giro del motor, dicho ventilador impulsa el aire de refrigeración sobre la superficie.

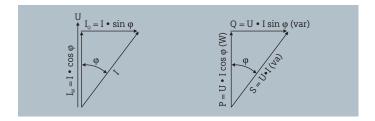
El ventilador y su caperuza correspondiente están conformados para que la corriente de aire refrigerante no pueda acumular suciedad ni fibras que podrían obstaculizar la refrigeración.

Rendimiento y factor de potencia

El rendimiento η y el factor de potencia cos φ se indican en las tablas de selección, referidos a la potencia nominal (100% de carga), a la tensión nominal y a la frecuencia nominal. En los diagramas que a continuación se exponen, se han supuesto valores medios para η y cos φ , para motores con rotor de jaula de 1800 rpm y potencias comprendidas entre 0,1 y 1000 kW.

Cuando haya que reducir mucho la potencia, los motores tendrán valores de servicio más desfavorables, que son los indicados en este catálogo. Los valores de servicio de los motores con potencias diferentes a las nominales varían del siguiente modo: el deslizamiento se altera, aproximadamente, en proporción directa con la potencia. El rendimiento η y el factor de potencia cos ϕ deben ser extraídos de la tabla siguiente para cargas parciales.

Rendimiento en 1/2 de la carga nomi	3/4	parcial de: 4/4	5/4
93.5	95	95	94.5
92.5	94	94	93.5
91.5	93	93	92.5
91	92	92	91.5
90	91	91	90
89	90	90	89
88	89	89	88
87	88	88	87
86	87	87	86
85	86	86	85
84	85	85	83.5
83	84	84	82.5
82	83	83	81.5
		Continúa en la	página siguiente


Generalidades

Rendimiento en			
1/2	3/4	4/4	5/4
de la carga nomi	nai		
Continuanción			
81	82	82	80.5
80	81	81	79.5
79	80	80	78.5
77	79.5	79	77.5
75.5	78.5	78	76.5
74	77.5	77	75
73	76	76	74
72	75	75	73
71	74	74	72
70 68	73 72	73 72	71 70
67	72	72	69
66	70	70	68
65	69	69	67
64	67.5	68	66
62	66.5	67	65
61	65	66	64
60	64	65	63
59	63	64	62
57	62	63	61
56	60.5	62	60.5
55	59.5	61	59.5
54	58.5	60	58.5
53	58	59	57
52	57	58	56
51	55	57	55
49	54	56	54
47	52	55	53
46	51	54	52
45	50	53	51
Factor de potenc	in (coc i) n la	narga nargial d	lo.
1/2	3/4	4/4	5/4
de la carga nomi		-2/-2	3/-2
		0.00	0.00
0.83	0.88	0.90	0.90
0.80	0.86	0.89	0.89
0.78	0.85	0.88	0.88
0.76 0.75	0.84 0.83	0.87 0.86	0.87 0.86
0.73	0.83	0.85	0.86
0.73	0.80	0.84	0.85
0.69	0.79	0.83	0.84
0.67	0.77	0.82	0.83
0.66	0.76	0.81	0.82
0.65	0.75	0.80	0.81
0.63	0.74	0.79	0.80
0.61	0.72	0.78	0.80
0.59	0.71	0.77	0.79
0.58	0.70	0.76	0.78
0.56	0.69	0.75	0.78
0.55	0.68	0.74	0.77
0.54	0.67	0.73	0.76
0.52	0.63	0.72	0.77
0.50			
0.50	0.62	0.71	0.76

Compensación de la potencia reactiva en los motores trifásicos

Los motores trifásicos absorben de la red potencia eléctrica aparente, compuesta por una parte activa y otra reactiva. La potencia activa (menos las pérdidas eléctricas) es transformada por el motor en potencia mecánica, disponiéndose de la misma en el eje de la máquina. La potencia reactiva sirve solamente para formar el campo magnético, es decir, para "magnetizar" el motor.

La relación existente entre la potencia activa y la aparente es el factor de potencia $\cos \varphi$. Entre mayor sea el factor de potencia $\cos \varphi$, tanto mayor será la potencia eléctrica transformada en relación con la absorbida de la red.

Con el fin de mejorar el factor de potencia, se compensa la potencia reactiva de magnetización, utilizando para ello condensadores de potencia. De esta manera, se descargan los generadores, las líneas de transporte y los transformadores de distribución de la generación y transmisión de la potencia reactiva, con lo cual se colabora a mantener la tensión en la red, y se eleva la potencia activa a transportar. Se distinguen las clases siguientes de compensación.

A) Compensación individual

En este caso, el condensador se dispone junto al motor a compensar, conectándose y desconectándose junto con este último.

B) Compensación por grupos y central

En caso de compensación por grupos, se dispone un condensador para varios motores. De esta manera, la potencia del condensador conectado se aprovecha mejor que en el caso de compensación individual. La compensación por grupos se aplica ventajosamente cuando se tiene un número considerable de pequeños motores, y cuando los motores sólo funcionan temporalmente.

En caso de compensación central, la potencia reactiva necesaria en una red o en un servicio se cubre con una batería de condensadores dispuesta centralmente. Esta batería estará subdividida en varios grupos. En concordancia con la demanda de potencia reactiva, se conectarán y desconectarán a mano o automáticamente los diferentes grupos.

Forma de dimensionar los condensadores para compensación individual

Con el fin de evitar una sobrecompensación y, por tanto, el peligro de que sobrevenga una autoexcitación, después de desconectar el motor, se compensa, por regla general, aproximadamente el 90% de la potencia reactiva en vacío. Las condiciones técnicas de conexión de VDE, considerando lo expuesto anteriormente, indican para la compensación individual de motores las siguientes potencias de los condensadores aproximadamente:

Los condensadores se conectan directamente a los bornes U.V.W. del motor.

Potencia del motor (kW)	Potencia del condensador (kVar)
4.0 a 4.9	2
5.0 a 5.9	2.5
6.0 a 7.9	3
8.0 a 10.9	4
11.0 a 13.9	5
14.0 a 17.9	6
18.0 a 21.9	8
22.0 a 29.9	10
A partir de 30.0	35% aprox. de la potencia nominal del motor

Cálculo de la potencia y del par motor

La potencia (kW) o el par motor de accionamiento (Nm) y la velocidad del rotor (rpm), durante el servicio nominal de la máquina impulsada, tienen que conocerse con la mayor exactitud posible.

La potencia se expresa de la siguiente forma:

$$P (kW) = \frac{M \cdot n}{9.55 \ 1000}$$

siendo:

P = potencia (kW)

M = par motor (Nm)

n = velocidad de rotación (rpm)

Trantándose de una fuerza F que describa un movimiento rectilíneo con una velocidad v, la potencia es:

$$P = F \cdot v$$

siendo:

P = potencia (Nm/s)

F = fuerza(N)

v = velocidad (m/s)

El par motor equivalente de una fuerza sometida a movimiento rectilíneo es:

$$M = 9.55 \frac{F \cdot V}{n}$$

siendo:

M = par motor (Nm)

F = fuerza(N)

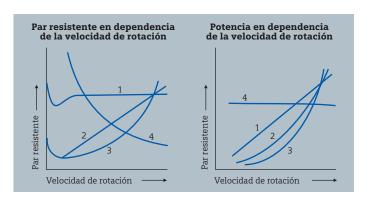
V = velocidad (m/s)

n = velocidad de rotación (rpm)

Conversión de potencia en kW a potencia en CV (HP métricos), y viceversa

Potencia (kW) = 0.73 potencia (CV)

Potencia (CV) = 1.36 potencia (kW)


Conversión de potencia en kW a potencia en HP del sistema inglés (horse power)

Potencia (kW) = 0.746 potencia (HP)

Potencia (HP) = 1.34 potencia (kW)

Curva característica del par resistente

Para comprobar los procesos de arranque y de frenado, y para seleccionar la velocidad del motor a utilizar, se necesita conocer la curva del par resistente de la máquina accionada (par de carga), en dependencia de la velocidad de rotación. Las formas básicas representativas de los pares resistentes se reproducen en la figura inferior izquierda. En la figura inferior derecha se muestra el curso correspondiente de la potencia necesaria.

- 1. Par resistente prácticamente constante, potencia proporcional a la velocidad de rotación.
 - Se establece normalmente, en mecanismos elevadores, bombas y compresores de émbolo que impulsen venciendo una presión constante, laminadores, cintas transportadoras, molinos sin efecto ventilador, máquinas herramientas con fuerza de corte constante.
- El par resistente crece proporcionalmente con la velocidad de rotación y la potencia aumenta proporcionalmente con el cuadrado de la velocidad.
- 3.El par resistente crece proporcionalmente con el cuadrado de la velocidad de rotación, y la potencia con el cubo de la velocidad de rotación.

Rige normalmente para bombas centrífugas, ventiladores y soplantes centrífugos, máquinas de émbolo que alimenten una red de tuberías abiertas.

Generalidades

4. El par resistente decrece en proporción inversa con la velocidad de rotación, permaneciendo constante la potencia. Solamente se considerará este caso para procesos de regulación, presentándose en los tornos y máquinas herramientas similares, máquinas bobinadoras y descortezadoras.

Si la transmisión se ejecuta con correas o engranajes, el par resistente se reducirá a la velocidad de rotación del motor.

$$\mathbf{M}_1 = \frac{\mathbf{M}_2 \cdot \mathbf{n}_2}{\mathbf{n}_1}$$

siendo:

 M_1 = par resistente en el eje de motor

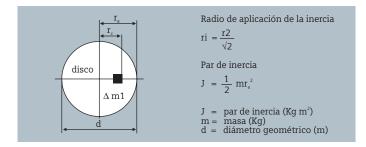
 M_2^1 = par resistente en el eje de la máquina

n₁ = velocidad de rotación del motor

n₂ = velocidad de rotación de la máquina

El par de arranque tiene que conocerse con la mayor exactitud posible.

Determinación del momento de inercia

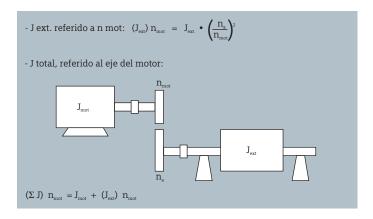

En los procesos de arranque y frenado habrá que conocer, además de la curva representativa del par resistente, el momento de inercia de la máquina y del acoplamiento, expresado en kg m² y reducido a la velocidad de rotación del motor.

El par de inercia no es un par de giro sino una característica propia de un cuerpo referido a su eje de giro. El par de inercia es la suma (integral) de todas las partículas (Dm) de un cuerpo, multiplicada cada una por el cuadrado de su distancia al eje de giro es decir,

$$J = \Delta m1 r^2 + \Delta m2 r^2 + ... = \Sigma \Delta mr^2$$

En caso de cuerpos complicados, se determinará el momento de inercia de la parte giratoria mediante una prueba de parada por inercia. A continuación se presentan dos ejemplos del cálculo del momento de inercia,

a) Siendo un disco de espesor constante y radio geométrico r_a:


b) Si se trata de una corona circular de espesor constante y diámetros geométricos d1, d2:

Diámetro de aplicación de la inercia

$$D = \sqrt{\frac{d_1^2 + d_2^2}{2}}$$

$$J = m \frac{d_1^2 + d_2^2}{8}$$

Para reducir el momento de inercia de un cuerpo con una velocidad de rotación cualquiera, a la velocidad de giro del eje del motor, o para pasar de una masa sometida a un movimiento rectilíneo a un momento de impulsión equivalente, se hará uso de la relación que a continuación se expone:

Si se trata de masas sometidas a movimientos rectilíneos, tales como los accionamientos de mesas o de carros, el momento de inercia equivalente referido al eje del motor se calcula de la forma siguiente:

$$J = \frac{m}{4\pi} \left(\frac{60V}{n_{mot}} \right)^2$$

siendo:

J = momento de inercia (kgm²) de la máquina accionada

m = carga (kg)

V = velocidad (m/s)

 n_{mot} = velocidad de rotación (rpm)

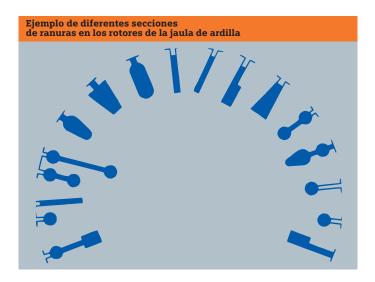
Si varía la carga, así como en casos de servicio de breve duración o servicio intermitente, tiene que conocerse además el ciclo de trabajo (par motor en dependencia del tiempo).

Protección del motor

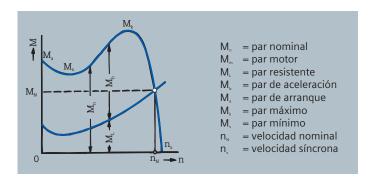
En términos generales, los motores se pueden proteger de las siguientes maneras:

- a) Con un guardamotor cuya función es proteger el motor contra sobrecargas y cortocircuitos por medio de disparadores de sobreintensidad regulables que se deben graduar exactamente a la intensidad nominal del motor y disparadores de sobreintensidad electromagnéticas sin retardo, que actúan al originarse un cortocircuito.
- b)Mediante fusibles, contactor y relé bimetálico; de esta forma se obtiene tanto la protección de cortocircuito y sobrecarga como la de marcha en dos fases. Permite además, mando a distancia.

Pares e Intensidades


El campo magnético giratorio generado en el estator corta las barras conductoras de corriente del rotor, produciendo en ellas un momento de giro (par motor) que origina el movimiento rotativo

La potencia y el par nominal de un motor caracterizan su capacidad de carga, a la velocidad nominal, bajo condiciones de servicio normales.


En las ranuras del estator formado de chapa magnética va introducido el devanado primario, el cual determina fundamentalmente los datos eléctricos del motor y genera el campo magnético de velocidad sincrónica, por ejemplo, 3.600 r.p.m. en el caso de dos polos, 1.800 r.p.m. en el caso de cuatro polos, si la frecuencia de la red es de 60 Hz.

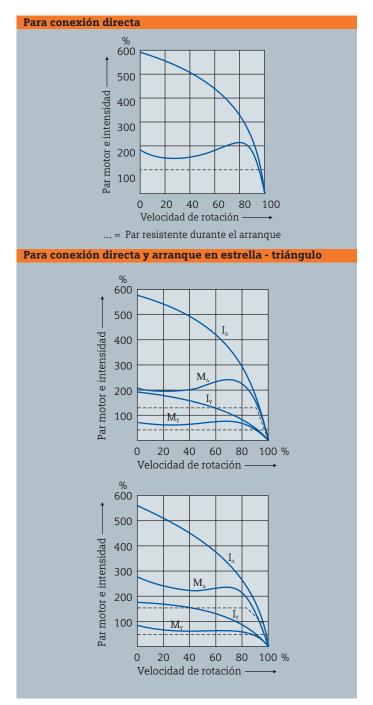
Las ranuras ejecutadas en la periferia de las chapas magnéticas del rotor alojan el devanado secundario, que tiene forma de jaula y se fabrica de aluminio. La construcción de la jaula ejerce decisiva influencia sobre el comportamiento del par durante el proceso de arranque.

Las secciones de las barras de las jaulas de los rotores son muy diferentes, según tamaño del motor, clase y serie de fabricación. Cada forma de la sección de la barra da como resultado una conducción diferente de corriente y, consecuentemente, otra curva del par motor.

El par que desarrolla un motor en su eje presenta una magnitud muy variable para las velocidades comprendidas entre n=0 y n=ns. El curso característico del par respecto a la velocidad de rotación del motor trifásico con rotor de jaula queda representado en el diagrama siguiente. (Curva característica del par).

Puntos característicos de la curva son el par de arranque, M_a , el par mínimo M_s y el par máximo M_k .

Según las definiciones recogidas en VDE 0530.


- Par de arranque es el par mínimo que desarrolla el motor partiendo del estado de reposo, estando el rotor en la posición más desfavorable, a la tensión y frecuencia nominales, una vez terminados los procesos de compensación.
- Par mínimo es el par más pequeño en la gama de velocidades comprendida entre el estado de reposo y el par máximo, a la tensión y frecuencia nominales.
- Par máximo es el mayor par que desarrolla un motor durante el proceso de arranque a la tensión y frecuencia nominales.

Los valores correspondientes al par de arranque, al par mínimo y al par máximo, así como la intensidad en el arranque para un cierto motor, se indican en las tablas de selección respectivas.

Como la característica del par motor durante el proceso de aceleración depende del dimensionamiento eléctrico, la característica del motor tiene que elegirse en correspondencia con el concurso del par resistente de que se trate, es decir, que habrá que tomar una de las clases de pares posibles, de acuerdo con las tablas de selección. Los motores con clases de pares, por ejemplo KL 10 ó Kl 16, por la clasificación de sus pares dan a conocer que están proyectados, en caso de conexión directa, para acelerar venciendo un par resistente del 100% ó 160% del nominal. Esto significa que el par motor está con seguridad por encima del mencionado valor, de forma que se cuenta con un par de aceleración suficientemente elevado para que la máquina accionada, partiendo de la velocidad de rotación cero, llegue a la propia del servicio.

Generalidades

Tratándose de motores con 2 clases de par (si esto se hubiese previsto), el inferior se utilizará, principalmente, para accionar con conexión directa. La clase de par superior se utilizará cuando la intensidad de arranque deba ser baja, recurriendo para ello a la conexión en Y Δ , o cuando si se conecta directamente, se pretenda conseguir un par de arranque elevado (para arranque pesado).

La velocidad nominal de rotación del motor se diferencia de la velocidad de sincronismo en el deslizamiento nominal S_N .

$$S_{N} = \frac{n_{S} - n_{N}}{n_{S}} 100$$

siendo

 S_N = deslizamiento nominal (%)

 $n_{\rm S}^{\rm N}$ = velocidad de sincronismo (rpm)

 n_N = velocidad nominal de rotación (rpm)

El par motor nominal se calcula de la siguiente forma:

$$M_N = 9.55 \cdot P_N \cdot \frac{1.000}{n_S}$$

 $M_N = par motor nominal (Nm)$

 n_S = velocidad sincrónica (rpm)

 P_{N} = potencia nominal (kW)

Características del par motor para accionamientos especiales

A) Motores con rotor de jaula mecanismos elevadores

En el servicio de los mecanismos elevadores, los motores funcionan raras veces durante largo tiempo a la plena velocidad de rotación. No tiene, por tanto, gran importancia que se establezca una elevada pérdida de deslizamiento, debido a ello es posible ejecutar los motores con un deslizamiento máximo mayor. De esta manera resulta un arranque elástico.

Para el servicio de los mecanismos elevadores, los motores con rotor de jaula se construyen con par de las clases KL 13h y KL 16h, es decir, que el motor puede arrancar con seguridad venciendo un par resistente del 130% ó del 160% del par nominal. La letra "h" indica que el curso de la característica del par motor se ha adaptado a las condiciones particulares del servicio de esta clase de mecanismos. Por ejemplo, con una duración de conexión del 40%, estos motores, en lo que afecta a la potencia, ofrecen un par de arranque doble o triple de normal y una intensidad de arranque aproximadamente cuatro o cinco veces mayor que la normal. En este caso, el par de arranque es el par máximo que puede presentarse en la gama comprendida entre el estado de reposo y la velocidad de rotación nominal.

B) Motores con rotor de jaula para accionamiento de prensas

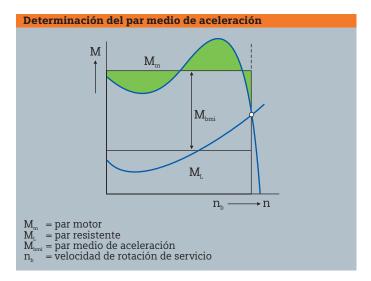
Para accionar prensas con grados de inercia elevados, se utilizan frecuentemente motores provistos de rotores llamados de deslizamiento o de resistencia. Estos motores tienen aproximadamente sólo el 80% de la potencia nominal normal, y presentan un deslizamiento doble del de la ejecución normal. La clasificación del par es, por ejemplo, KL 10s (rotor de deslizamiento).

Los motores tienen un par de arranque de 1,7 veces el par nominal aproximadamente, y absorben una intensidad inicial en el arranque que es unas 4 veces la nominal (para más detalles, hágase la consulta correspondiente).

Determinación del tiempo de arranque

Si se conoce el par medio de aceleración, se puede determinar aproximadamente el tiempo de duración del ciclo de arranque, desde n=0 hasta n=nb de la siguiente forma:

$$t_a = \frac{\Sigma J \cdot n_b}{9,55 \, M_{bmi}}$$

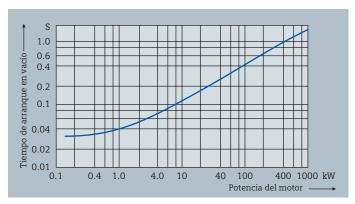

t_a = tiempo de arrangue (s)

= momento de impulsión total (kgm2)

n_b = velocidad de rotación de servicio (rpm)

 $M_{\rm bmi}$ = par medio de aceleración (Nm)

La figura expone un método sencillo para determinar, de forma relativamente exacta, el par medio de aceleración. Gráficamente se obtendrá el valor medio (por ejemplo, contando los cuadros sobre un papel milimetrado) de la característica del par motor y del par resistente.


El momento de inercia total es igual al momento de inercia del motor más el correspondiente a la máquina accionada y al acoplamiento o bien más el correspondiente a las poleas (reducido a la velocidad de rotación del eje del motor).

Si el tiempo de arranque así determinado fuese superior a 10 s. aproximadamente, sería preciso consultar para determinar si el arranque es admisible, considerando el calentamiento del motor. Igualmente será necesario verificar el cálculo en caso de que en pequeños intervalos se repitan los arranques.

En caso de que, por ser grande el momento de inercia y elevado el par resistente, no se pueda conseguir un arranque correcto utilizando un motor con la clase de par más elevada de las que figuran en las tablas de selección, habrá que tomar un motor mayor.

Tiempos de arranque aproximados de motores con rotor de jaula que arrancan en vacío

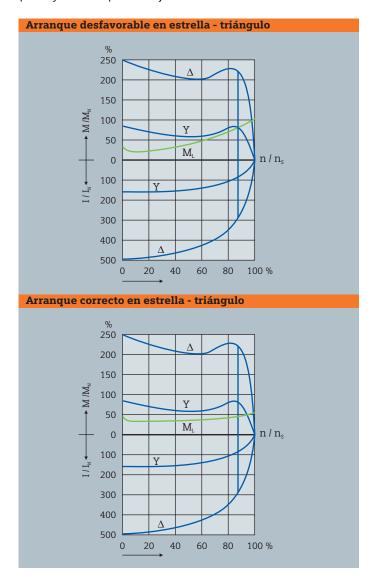
El diagrama de la figura da a conocer los tiempos aproximados de arranque en vacío (sin contar el momento de impulsión adicional externo) de motores tetrapolares con rotor de jaula, provistos de refrigeración de superficie (valores medios).

Los tiempos de arranque en vacío no deben considerarse para estudiar los procesos de arranque, en lo que a la solicitación térmica de los motores se refiere.

Métodos de arranque

Los motores trifásicos con rotor de jaula se deberán conectar directamente, siempre que sea posible.

Hay que observar que, para un determinado motor, existe ya una curva característica del par motor y de la intensidad, con independencia de la dificultad del arranque. El método de arranque más usado es la conexión $Y\Delta$.


Se realizará el arranque en estrella-triángulo, cuando se requiera un par motor especialmente bajo (arranque suave) o se exija que las intensidades en el arranque sean reducidas (por ejemplo, porque así lo solicite la compañía distribuidora de energía eléctrica).

El par de arranque, el par máximo y todos los otros valores del par motor, así como de la intensidad de arranque, se encuentran comprendidos entre el 25% y el 30% de los valores que rigen en caso de conexión directa.

El par resistente durante el tiempo de arranque en que se establece la conexión en Y tiene que ser bastante menor que el par motor. En la mayoría de las ocasiones, esto equivale a arrancar en vacío. La conmutación de estrella a triángulo se realizará sólo cuando el motor se encuentre en un régimen de velocidades que esté próximo al de servicio.

Generalidades

En el diagrama que a continuación se presenta, la primera figura muestra un caso en el que el arranque en estrella-triángulo no es conveniente, puesto que, por ser demasiado elevado el par resistente, la conmutación origina una cresta inadmisiblemente elevada en los valores representativos de par y de la intensidad, por cuyo motivo pierde su justificación la conexión en Y Δ .

Si se trata de grandes momentos de inercia o de pares resistentes mayores del 15% al 20% del par motor correspondiente a la conexión en triángulo, habrá de proceder con la debida precaución, y consultar si fuese necesario.

Calor por pérdidas durante el arranque

Si el arranque no tiene lugar en vacío, el calor por pérdidas de los motores que arrancan en estrella-triángulo es mayor que cuando el arranque se verifica por conexión directa.

Si el arranque se hace venciendo exclusivamente la inercia de las masas (sin par resistente), el trabajo por pérdidas del rotor es prácticamente igual en magnitud al trabajo de aceleración, que, a su vez, es igual a la energía cinética acumulada en las masas al final del proceso de arranque:

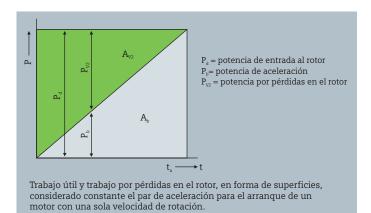
$$W = J \frac{\omega 2}{2} = J \frac{1}{2} \left(\frac{2\pi n_N}{60} \right)^2$$

W = energía cinética (WS)

J = memento de inercia (Kgm²)

 ω = velocidad angular (1/s)

n_N = velocidad de rotación de servicio (rpm)


Además, el trabajo por pérdidas en el rotor, al tratarse de arranque venciendo solamente las masas de inercia, es independiente de la forma constructiva del rotor, de la clase de arranque, del par de aceleración y del tiempo de duración del arranque; depende solamente del momento de inercia total y del cuadrado de la velocidad de rotación final.

Este caso se presenta prácticamente en el servicio de las centrífugas, de los trenes de rodillos de las laminadoras y en muchas máquinas herramientas. El trabajo por pérdida en el rotor, de forma contraria a como ocurre con el arranque bajo un par resistente, no se puede influir modificando la característica del par motor de la máquina.

En el diagrama siguiente se representa, para el caso especial de que sean constantes el par de aceleración o bien el par motor.

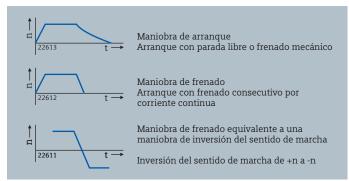
Mb = Mm = constante

en forma de una superficie determinada por la potencia P y el tiempo t, la distribución del trabajo útil o de aceleración (Ab) y el trabajo por pérdidas en el rotor (A_{v2}) .

Servicio de corta duración S2, servicio intermitente S3 y servicio continuo con carga Intermitente S6

Durante el servicio de corta duración, el motor alcanza en el tiempo determinado (por ejemplo, 10, 30, 60 ó 90 minutos) la sobretemperatura límite; la pauta que se establezca a continuación tiene que permitir que el motor se vuelva a enfriar hasta alcanzar la temperatura del medio refrigerante.

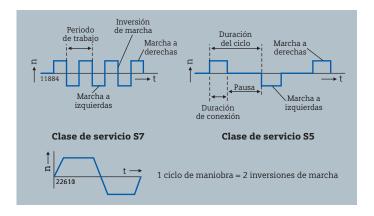
En el servicio intermitente o en el servicio continuo con carga intermitente, a los tiempos de conexión o de carga suceden las pausas durante las cuales el motor está en reposo (S3) o marcha en vacío (S6). Los tiempos de carga y reposo o bien marcha en vacío, son tan breves, que no se alcanzan las temperaturas de equilibrio.


La sobretemperatura media a que se llega en el estado final no debe sobrepasar la sobretemperatura límite. La duración del ciclo (tiempo de conexión más pausa) asciende a 10 min, si no se ha convenido nada en contrario. La duración relativa de conexión es la relación existente entre el tiempo de conexión o carga y el ciclo de trabajo; normalmente, los valores de esta relación son: 15%, 25%, 40% y 60%. Además de la duración relativa de conexión, tienen que conocerse las cargas, que en la mayoría de las ocasiones son variables, el momento de inercia adicional de la máquina adicionada y el número de maniobras por hora.

Los motores normales previstos para servicio permanente pueden utilizarse también para los servicios de corta duración e intermitente. Dentro de ciertos límites puede elevarse la potencia si se acepta la reducción de la capacidad de sobrecarga que esto trae consigo. Los motores para los mecanismos elevadores están proyectados especialmente para servicio intermitente.

Servicio de maniobra S4, S5 y S7

El servicio de maniobra es un caso especial de servicio intermitente con elevado número de ciclos. El calentamiento del motor no se determina, en esencia, por la carga que supone el trabajo, sino por los procesos de arranque, de frenado y de inversión del sentido de marcha. El factor determinante es el número de ciclos


(maniobras) por hora (frecuencia de maniobra), debiéndose distinguir entre maniobras de arranque, de frenado y de inversión de marcha.

Hay que distinguir entre:

- Servicio intermitente con flujo del arranque sobre la temperatura (S4),
- Servicio intermitente con influjo del arranque y del frenado sobre la temperatura (S5), y
- Servicio interrumpido con arranque y frenado (S7).

Representación simplificada de las clases de servicio con inversión del sentido de marcha.

Uno de los datos principales a considerar en los motores que presten servicio de maniobra además de la potencia nominal, es la frecuencia de inversión de marcha zo. Este es el número de inversiones por hora que realiza el motor en vacío sin masa de inercia adicional, en el que se alcanza la sobretemperatura límite. Para algunos motores con refrigeración de superficie y 1800 rpm se relacionan en la tabla siguiente la frecuencia de maniobra en vacío y el momento de impulsión.

Generalidades

Potenc		J del motor apróx.	Frecuencia de maniobra en vacío Z _o (maniobras/	Potencia nominal		J del motor apróx.	Frecuencia de maniobra en vacío Z _o (maniobras/
kW	HP	kg. m²	hora)	kW	HP	kg. m²	hora)
0.12	1/6	0.0003	4.000	3	4	0.0058	2.500
0.18	1/4	0.0004	4.000	4	5.5	0.0110	2.000
0.25	1/3	0.0006	3.500	5.5	7.5	0.0212	1.400
0.37	1/2	0.0008	3.500	7.5	10	0.026	1.200
0.55	3/4	0.0015	3.000	11	15	0.051	1.100
0.75	1	0.0018	3.000	15	20	0.060	600
1.1	1.5	0.0027	3.500	18.5	25	0.147	300
1.5	2	0.0036	3.000	22	30	0.162	300
2.2	3	0.0052	2.800	30	40	0.3	240

La frecuencia de maniobra admisible durante el servicio se deduce de las condiciones de este último, y es menor que la frecuencia de maniobra en vacío, debido esto principalmente al momento de impulsión externo correspondiente a la máquina accionada y a la carga de trabajo exigida. La reducción de la frecuencia de maniobra en vacío a la frecuencia de maniobra admisible se obtiene de la forma siguiente:

1. Considerando el momento de impulsión externo de la máquina accionada y de los elementos de transmisión de fuerza a través del factor del momento de impulsión Ks:

$$FI = \frac{J_{m}}{J_{m} + J_{ext}} \qquad K_{s} = \frac{1}{FI}$$

siendo:

FI = factor de inercia

Jm = momento de inercia del motor (Kgm²)

Jext. = momento de inercia externo referido a la velocidad de rotación del eje del motor (Kgm²)

Si la velocidad de rotación del eje del motor y la de la máquina accionada fuesen diferentes, por ejemplo, si se utiliza una transmisión por ruedas dentadas, la velocidad de rotación del motor tendrá que elegirse, bajo ciertas circunstancias, de tal forma que $Z=FI \cdot z_O$ resulte mínimo.

2. Considerando la carga durante el proceso de maniobra (es decir, cuando el motor tenga que arrancar venciendo un par de carga), por medio del factor Kg:

$$Kg = 1 - \frac{M_L}{M_m}$$

siendo

 ${
m M_L}~={
m par}$ de carga (Nm), que, en la práctica, en el servicio de maniobra se podrá suponer casi siempre como constante.

M_m = par motor medio (Nm) (para efectuar un cálculo aproximado, puede suponerse igual al par de arrangue).

El factor Kg se considerará sólo al efectuar maniobras de arranque. Cuando se hagan operaciones de inversión de marcha, se incrementará la energía de pérdidas del rotor en el período de arranque debido al par de carga, y se reducirá, por el contrario, en el período frenado. La suma de las pérdidas en los pe-

ríodos de arranque y frenado permanecerá, aproximadamente, constante, suponiendo unos valores de $M_L/M_m < 0.5$, de manera que el factor Kg. en las inversiones de marcha en esta gama, no necesita, prácticamente, ser considerado (Kg=1). Con valores de $M_L/M_m > 0.5$ será preciso consultar.

3. Considerando la carga en el período de trabajo mediante el factor de carga KL (una parte del calentamiento se origina por la frecuencia de maniobra, y la otra por la carga):

$$K_L = 1 - \left(\frac{P}{P_N}\right)^2$$

siendo:

P = potencia necesaria en la máquina accionada (kW)

 P_{N} = potencia nominal del motor (kW)

En el servicio de maniobra, la potencia nominal del motor tiene que ser siempre mayor que la potencia necesaria en la máquina accionada. Si la carga y el tiempo de marcha a izquierdas y a derechas fuesen diferentes, resultaría lo siguiente:

$$K_{L} = 1 - \frac{t_{R} \cdot P_{R}^{2} + t_{L} \cdot P_{L}^{2}}{(t_{R} + t_{L}) \cdot P_{N}^{2}}$$

siendo

 t_R ; t_L = tiempo de marcha a derecha o a izquierda (s)

 ${\rm P_R}$; ${\rm P_L}={\rm potencia}$ necesaria en la máquina accionada marchando a derecha o a izquierda (kW)

Con estos factores se calcula la frecuencia de maniobra en la clase de servicio S7 de la siguiente forma:

$$Z' = K_s K_a K_L Z_O$$

4. Considerando el coeficiente de disipación de calor en motores de 4 y 6 polos, en dependencia de la frecuencia de maniobra, a través del factor Kw. Este factor se obtendrá del diagrama de la figura siguiente, en función de la relación z'• z_o.

- 5.La frecuencia de maniobra admisible en la clase de servicio S7 es:
- Para inversiones de marcha: $z=k_w^{\bullet}z'$ (maniobras de inversión hora)
- Para maniobras de arranque: $z = f \cdot k_{w} \cdot z'$ (maniobras de arranque/hora)
- Para maniobras de frenado por corriente continua: z= 2.5•k_w•z' (maniobras de frenado/hora)

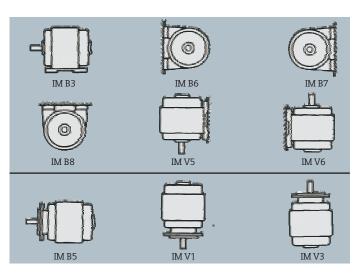
siendo:

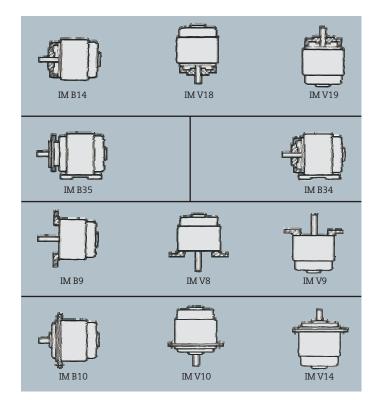
- f = factor de aumento: maniobras de arranque respecto a inversiones de marcha
- f = 2.5 para motores de hasta 15 kW
- f = 2.2 para motores de más de 15 kW

La frecuencia de maniobra admisible durante el servicio determinada de esta forma tiene que ser igual o superior a la que exige el ciclo de trabajo.

Si la frecuencia de maniobra es extremadamente alta, habrá que consultar. En las clases de servicio S4 y S5, al hacerlo indíquese también el ciclo de trabajo.

Regulación de la velocidad de rotación


La regulación de la velocidad de rotación en los motores con rotor de jaula se puede alcanzar modificando la frecuencia de la red de alimentación. Dado que, marchando a una velocidad de rotación baja, se reduce el efecto de refrigeración del ventilador, si se manda constantemente en el sentido decreciente, habrá que reducir el par motor y la potencia de la máquina en concordancia con la tabla que a continuación se expone, o será preciso recurrir al empleo de un motor de mayor tamaño.


Velocidad de rotación(%)	100	90	80	70	60	50	40	<40
Par motor (%)	100	96	91	85	80	72	62	Previa
Potencia (%)	100	86	73	60	48	36	25	consulta

Si se reduce el par resistente por lo menos en la misma proporción que la velocidad de rotación, por ejemplo, en el caso de ventiladores, bombas centrífugas y similares, será admisible reducir la velocidad de rotación hasta alcanzar el 20% de la nominal.

Forma constructiva según IEC publicación 34, parte 7

Los motores normalizados Siemens se suministran en diversas formas constructivas.

Respecto a las formas constructivas provistas de patas, tamaños 71 hasta 160, estas van fundidas con el motor en una pieza; en el resto de los motores, van atornilladas.

En la siguiente tabla están las abreviaturas de las formas constructivas según la norma IEC códigos I y II (No. 34, parte 7), y su equivalente en la norma DIN (No. 42.950).

Abreviaturas de las	formas constructivas	S
IEC CODIGO I	IEC CODIGO II	DIN
IM B3	IM 1001	В3
IM B6	IM 1051	В6
IM B7	IM 1061	В7
IM B8	IM 1071	B8
IM V5	IM 1011	V5
IM V6	IM 1031	V6
IM B5	IM 3001	B5
IM V1	IM 3011	V1
IM V3 IM B14	IM 3031 IM 3601	V3 B14
IM V18	IM 3601	V18
IM V19	IM 3631	V18 V19
IM B35	IM 2001	B3 / B5
IM B34	IM 2101	B3 / B14
IM B9	IM 9101	В9
IM V8	IM 9111	V8
IM V9	IM 9131	V9
IM B10	IM 4001	B10
IM V10	IM 4011	V10
IM V14	IM 4031	V14

Generalidades

Las dimensiones de las siguientes formas constructivas son iguales entre sí:

• B3, B6, B7, B8, V5 y V6

• B5,V1 v V3

• B9,V8 y V9

• B10,V10 y V14

• B14,V18 y V19

Los motores Siemens hasta el tamaño 225 inclusive, se pueden instalar en cualquiera de las formas indicadas en cada uno de los grupos anteriores. Por ejemplo, un motor de la forma constructiva B3 se puede instalar en la forma B6, B7, B8, V5 ó

Clase de Protección

Con la elección de una adecuada clase de protección de acuerdo al servicio y a las condiciones del medio ambiente, se evita:

La influencia nociva del agua, de los cuerpos extraños y del polvo: el contacto con partes rotativas en el interior del motor, o partes bajo tensión.

Motor con refrigeración de superficie

Clase de protección	IP44	IP54
1ª Cifra caracterí	stica	
Protección contra contactos involuntarios	Protección contra contactos involuntarios con herramientas u objetos similares	Protección total contra contactos involuntarios de cualquier clase
Protección contra cuerpos extraños	Protección contra la penetración de cuerpos sólidos extraños con diámetro mayor de 1 mm.	Protección contra depósitos de polvo perjudiciales
2ª Cifra caracterí	stica	
Protección contra agua	Protección contra salpicaduras de agua proveniente de cualquier dirección	Protección contra salpicaduras de agua proveniente de cualquier dirección

Las clases de protección de las máquinas eléctricas (según DIN 400500 IEC-34-5) se indican por medio de un código, el cual se compone de dos consonantes y dos cifras características. En algunos casos se emplea una consonante adicional:

<u>IP (International Protection):</u> Consonantes características para indicar el grado de protección contra contactos y entrada de aqua o de cuerpos extraños.

<u>O hasta 6:</u> 1a. cifra característica para indicar el grado de protección contra contactos y contra la entrada de cuerpos extraños.

<u>O hasta 8:</u> 2a. cifra característica para indicar el grado de protección contra entrada de agua (ninguna protección contra aceite).

R,W,S, y M.

Consonante adicional para indicar una clase de protección especial.

Transmisión por correas

En caso de que el accionamiento se haga por correa, el motor tiene que estar montado sobre rieles tensores o sobre una base desplazable, con el fin de poder ajustar la tensión correcta de la correa y retensarla cuando sea preciso. Si la correa se tensa demasiado, se ponen en peligro los cojinetes y el eje; por el contrario, si se tensa poco, resbala la correa.

Dispositivos tensores para el accionamiento de correas en V

Se colocarán de manera tal que la distancia entre poleas se pueda variar y resulte posible colocar las correas sin que queden tensas. Las correas se ajustarán de modo que no tengan flecha y no golpeen durante el servicio.

Determinación de la polea

Las poleas se dimensionarán de forma tal, que no se sobrepasen los valores admisibles de las fuerzas que actúan sobre el extremo del eje de la máquina eléctrica. En los accionamientos por correas, la carga radial depende de la tracción de la correa y de la tensión que ésta ejerce.

En los diagramas se representa la carga radial F_A en dependencia de la dimensión x, la cual indica la distancia existente entre el centro de la polea y el extremo del hombro del eje.

Si el accionamiento se lleva a cabo con correas planas, la dimensión "e" debe proyectarse de forma que la polea no roce con la tapa portacojinetes. Si la transmisión se efectúa con correas V resultará, por regla general, e = 0.

Con vistas al funcionamiento correcto de la transmisión, el ancho de la polea no debe ser mayor que el doble de la longitud del extremo del eje. Los diagramas representativos de la carga radial rigen para el lado de accionamiento con un par motor de hasta 687 Nm efectuando la tracción la correa en cualquier dirección, y con un par motor de más de 687 Nm cuando la tracción de la correa esté dirigida en sentido horizontal.

Las dimensiones de las poleas se determinarán de acuerdo con la potencia a transmitir, la clase de correa utilizada y la relación de transmisión que se pretenda conseguir. Si fuese preciso, se consultará a la empresa suministradora de la correa.

Las poleas se pueden calcular de la siguiente forma:

$$FA = 2 \times 10^7 \frac{P}{nD} C$$

siendo:

 F_A = carga radial (N) P = potencia nominal del motor (kW)

n = velocidad de rotación del motor (r.p.m.)

D = diámetro de la polea a emplear (mm)

C = factor de tensión previa de la correa.

Este factor asciende, aproximadamente, a los siguientes valores:

C = 2 para correas de cuero planas normales sin rodillo tensor

C = 2.2 a 2.5 para correas en V, según el tipo de carga

C = 2.2 a 3 para correas especiales de plástico, según tipo de carga y correa

El valor calculado para F_A se comprobará más adelante en la respectiva curva de cargas, y no deberá sobrepasar el valor indicado en los diagramas para x. Cuando la carga radial calculada sea superior a la admisible, y a pesar de elegir otra correa sometida a tensión previa distinta no se consiga una modificación esencial, habrá que usar una polea de diámetro mayor.

Montaje de los elementos de accionamiento

Acoplamiento (embragues), poleas, piñones, etc. se deben montar con un dispositivo especial para el cual se dispone de un centropunto en el eje de los motores. Los golpes dañan los cojinetes y deben ser evitados. El peso de la polea se sumará a la carga radial.

Al elegir las poleas, habrá que observar que la solicitación del material quede comprendida dentro del límite admisible, y que se pueda transmitir la potencia bajo una tensión previa normal de la correa. En la tabla figuran los diámetros máximos admisibles de las poleas de fundición. Para mayores diámetros habrá que emplear poleas de acero.

Velocidad de rotación (rpm) Diámetro máximo admisible de	3600	1800	1200	
las poleas de hierro fundido (mm)	160	285	410	

La tabla indica al mismo tiempo los diámetros para los que la velocidad de las correas de cuero planas de calidad mediana es más favorable. Si se emplean correas en V, la velocidad más favorable de la correa es menor, lo que se consigue reduciendo en un 20% el diámetro. Si se utilizan correas de adhesión especiales, por ser mayor la velocidad admisible de la correa, se pueden aumentar aproximadamente en un 20% los diámetros que figuran en la tabla, debiéndose emplear, sin embargo, poleas de acero.

La distancia entre ejes de las dos poleas se fijará en concordancia con las indicaciones del fabricante de correas y de poleas.

En lugares expuestos a peligro de explosión, solamente podrán utilizarse correas en las que sea imposible que se originen cargas electrostáticas.

Accionamiento por ruedas dentadas

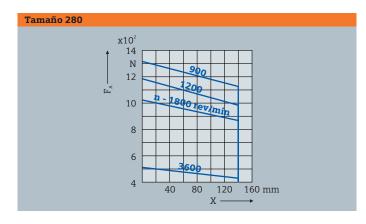
Si la transmisión se realiza mediante ruedas dentadas, habrá que observar que los ejes de las dos máquinas se encuentren paralelos y que la marcha del piñón y la corona sea circular. Los dientes del piñón no deberán atascarse en ninguna posición de la corona, puesto que de lo contrario se someterían los cojinetes a un esfuerzo inadmisible, motivándose vibraciones, trepidaciones y ruidos molestos. Para comprobar el buen ajuste, se coloca entre el piñón y la corona una tira de papel de la misma anchura del piñón. Al girar, se marcan sobre la tira de papel los puntos en los que el ataque es defectuoso. La comprobación se extenderá a todos los dientes de la corona. Según sea el resultado, se alineará cuidadosamente la máquina y se repetirá la comprobación hasta que se haya conseguido un ataque uniforme en todos los dientes.

Cargas radiales y axiales admisibles

Los cojinetes, así como las partes mecánicas, están sometidos a cargas radiales y axiales.

En la tabla y gráficos de las páginas siguientes se detallan los valores que sirven para determinar las cargas que pueden soportar los motores equipados con cojinetes.

Cargas radiales


De la tabla siguiente pueden obtenerse los valores máximos admisibles para una vida útil de los cojinetes de 20.000 horas:

Tamaño según	Tipo	Número	Carga admisible
IEC	1LA3, 1LA5/7	de polos	(FA) para X = I N
	000	2	200
	070	4	310
71		<u>4</u> 2	200
	073	4	310
			350
		<u>6</u> 2	240
	080	4	370
		6	400
80		2	240
	083	4	370
		6	400
		<u>6</u> 2	350
90 S	090	4	515
			590
		<u>6</u> 2	350
90 L	096	4	515
		6	590
	100	4	710
100 1	106	6	820
100 L	107	4	710
	106	2	490
		2	590
112 M	113	4	720
		<u>6</u> 2	820
		2	780
132 S	130	4	1.050
132 3		<u>6</u> 2	1.200
	131		780
122.14	133	4	1.050
132 M	155	6	1.200
		2	900
160 M	163	4	1.120
100 101		6	1.230
	164	2	900
		2	900
160 L	166	4	1.120
		6	1.230

Generalidades

En todos los casos, se considera que el punto de aplicación de la carga cae dentro del eje.

Tamaño según IEC	Tipo 1LA4, 1LA6/7	Número de polos	Carga admisible (FA) para X = I N
		2	1.300
180 M	183	4	1.630
180 L	186	6	1.930
		2	2.000
200 L	206	4	2.500
	207	6	3.000
225 S	220	2	2.850
225 M	223	4	3.300
		6	4.000
		2	6.100
250 M	253	4	7.350
		6	8.550

Cargas axiales máximas admitidas

3600 rp	m						
Tamaño	Tipo 1LA3		Montaje	Vertical			
según IEC	1LA4, 1LA5 1LA6/7	Peso del rotor N	Montaje horizontal N	Carga hacia abajo N	Carga hacia arriba N		
71	070 073	10.09 12.74	81.34 62.72	74.48 53.9	93.1 74.48		
80	080	20.28	125.4	107.8	147		
90 S	083 090	24.69 30.38	96.04 163.66	77.42 137.2	117.6 196		
90 L	096	37.24	144.06	107.8	186.2		
100 L 112 M	106 113	63.7 78.4	211.68 451.78	166.6 392	264.6 529.2		
132 S	130 131	117.6 132.3	577.22 557.62	480.2 441	695.8 695.8		
160 M	163	196	769.3	597.8	970.2		
160 L	164 166	235.2 284.2	749.7 721.28	548.8 176.4	980 999.6		
180 M	183	294	1078	901.6	1498.4		
200 L	206 207	343 392	1715 1617	1450.4 1352.4	2146.2 2146.2		
225 M 250 M	223 253	647 901	1900 2200	1400 1500	2720 3340		
280 S	280	1225	2200	1200	3700		
280 M	283	1372	2100	1000	3800		

1800 rp	m				
Tamaño	Tipo 1LA3		Montaje	Vertical	
según	1LA4, 1LA5	Peso del	Montaje	Carga	Carga
IEC	1LA6/7	rotor	horizontal	hacia abajo	hacia arriba
		N	N	N	N
71	070	12.74	110.74	98	127.4
	073	16.66	100.94	88.2	117.6
80	080	25.28	129.36	107.8	156.8
	083	29.49	125.44	98	156.8
90 S	090	38.22	240.1	215.6	274.4
90 L	096	44.02	211.68	176.4	254.8
100 L	106	63.7	336.14	284.2	392
	107	73.5	288.12	225.4	362.6
112 M	113	98	577.22	499.8	676.2
132 S	130	142.1	787.92	666.4	940.8
132 M	133	176.4	749.7	597.8	931
160 M	163	240.1	1107.4	891.8	136.2
160 L	166	294	1009.4	735	1323
180 M	183	343	1127	901.6	1597.4
180 L	186	392	1078	744.8	1548.4
	207	490	1715	1303.4	2303
225 S	220	823	2450	1820	3500
225 M	223	931	2350	1600	3500
250 M	253	1.176	2800	1850	4250
280 S	280	1.617	5800	4500	7800
280 M	283	1.813	5700	4200	7900

1200 rp	m				
Tamaño	Tipo 1LA3		Montaje	Vertical	
según	1LA4, 1LA5	Peso del	Montaje	Carga	Carga
IEC	1LA6/7	rotor N	horizontal N	hacia abajo N	hacia arriba N
71	073	17.15	125.44	107.8	147
80	080	24.3	168.56	147	196
	083	31.16	163.66	137.2	196
90 S	090	28.22	307.72	274.4	352.8
90 L	096	49	288.12	245	343
100 L	106	68.6	393.96	333.2	372.4
112 M	113	88.2	653.66	588	744.8
132 S	130	132.3	941.78	842.8	1078.0
132 M	133	200.9	865.34	705.6	1058.4
160 M	163	264.6	1156.4	744.8	1411.2
160 L	166	333.2	1007.4	803.6	1450.4
180 L	186	392	1323	1048.6	1852.2
200 L	206	490	2156	1852.2	2851.8
	207	539	2107	1695.4	2802.8
225 M	223	921	2900	2200	4080
250 M	253	1.176	3500	2550	4950
280 S	280	1.470	7200	6100	9100
280 M	283	1.666	7000	5700	9100

Tipos de cojinete

ESPACIO PARA TABLA NUEVA

Todos los motores hasta el tamaño 160L inclusive, poseen balinera de doble sello.

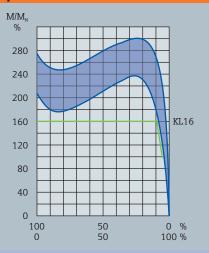
En los motores con dispositivo de reengrase, puede introducirse nueva grasa durante el servicio. Un disco centrifugador arroja automáticamente la grasa hacia el exterior y actúa, al mismo tiempo, como cierre estanco del cojinete.

Los motores trifásicos se suministran con rodamientos de diseño especial con juego interno C3 ó CM.

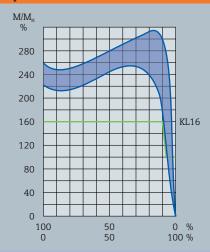
¡Atención!

Los motores eléctricos normalizados a partir del tamaño 280 salen de fábrica con una protección para sus cojinetes durante el transporte. Esta protección consiste en un cilindro metálico que se abulona al centro del eje en una de sus bases; la otra base apoya sobre la tapa portacojines, impidiendo así el movimiento del rotor.

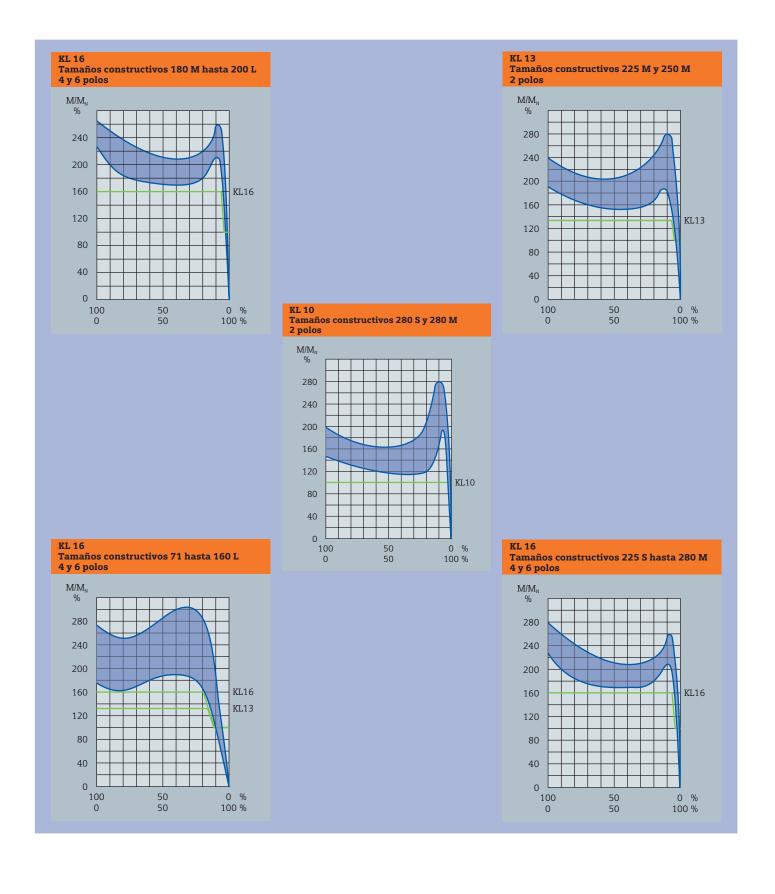
Características del rotor en caso de conectar directamente motores 1LA3, 1LA4, 1LA5 y 1LA7

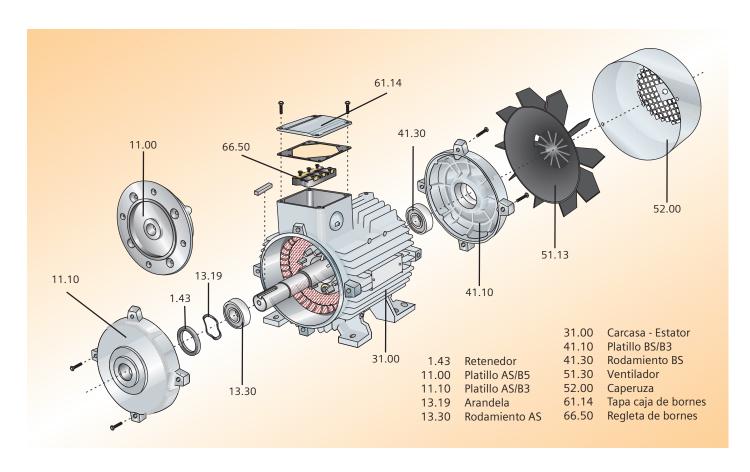

Par de giro en % de los valores nominales, velocidad de giro en % de la velocidad de giro sincrónica

Si los valores de servicio de la tensión o de la frecuencia discrepan de sus correspondientes valores nominales, el par de arranque y los pares mínimo y máximo varían, en la forma aproximada, proporcionalmente el cuadrado de las tensiones y en proporción inversa al cuadrado de las frecuencias.


El par de arranque se indica en las tablas de selección, como múltiplo del par monimal. La posición del par máximo se tomará del diagrama si así conviniese. Las tolerancias son \pm 10% para el par máximo.

Deslizamiento: se expresa en % de la velocidad sin sincronismo.


KL 16 Tamaños constructivos 71 hasta 160 L 2 polos


KL 16 Tamaños constructivos 180 M y 200 L 2 polos

Generalidades

Despiece

Caja de conexiones

Los tamaños 71 y superiores, hasta el 220, poseen la caja de conexiones en la parte superior de la carcasa; en los demás motores va instalada a la derecha.

Para la conexión a tierra se dispone, en todos los tipos, de un borne en la caja de conexiones, debidamente marcado; del tamaño 180 en adelante, adicionalmente se tienen bornes de puesta a tierra en las patas. Los motores se suministran con los puentes correspondientes para las diferentes conexiones de sus bobinas.

Carcasa

La carcasa de los motores de los tamaños 71 a 160 es de aluminio inyectado. Del tamaño 180 en adelante tienen la carcasa en hierro fundido.

Platillos

Los tamaños AH 71, 80 y 90 se fabrican con platillos de aleación de aluminio; a partir del tamaño 112 los platillos de los motores son de fundición de hierro, tanto en el lado de accionamiento AS como en el lado de servicio BS.

Pintura

Los motores llevan dos capas de pintura. Una capa anticorrosiva, que ofrece protección en caso de humedad o de instalación a la intemperie o en locales en los que haya que contar con gases y vapores químicamente agresivos y otra de acabado color gris.

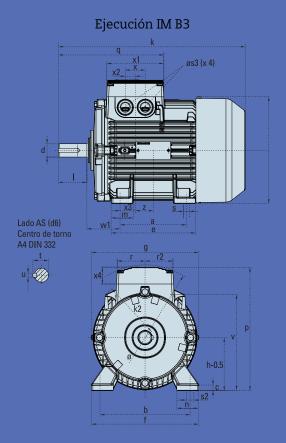
Ventilador

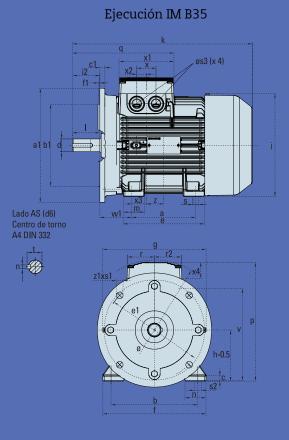
Los ventiladores para la refrigeración del motor son de plástico en todos los tamaños de la serie 1LA3/5/7 y su acción refrigerante es complementada por la caperuza, fabricada en lámina de acero. Para las series 1LA4 y 1LA6 el ventilador es fundido en aluminio.

Generalidades

PAGINA PARA FOTOS

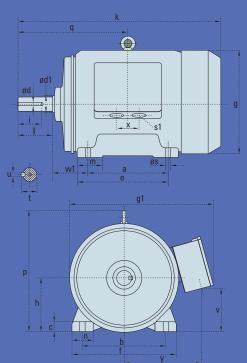
Volosi	4-4 260	0 rpm (2 polos)													
veloci	uau 560	o rpin (2 polos)													
Código	Código	Tipo	Frame	HP	kW	F.S.	In	a	rpm	Eficiencia	Torque	Momento	Torque	Intensidad	Peso
Actual	Antiquo	*	IEC				220 V	440 V	•	η	nominal	de inercia	de arrang	le arranque como fac.	
							Amp.	Amp.		%	Nm	Kg m2	de Tn	de In	kg
01083	836273	1LA7 070-2YA60	71	0.75	0.56	1.15	2.40	1.20	3430	79.0	1.56	0.00035	2.7	6.0	4.3
01084	836290	1LA7 072-2YA60	71	0.90	0.67	1.05	3.20	1.60	3320	66.0	1.93	0.00035	2.3	4.9	6.0
01085	836274	1LA7 073-2YA60	71	1.00	0.75	1.15	3.50	1.75	3320	65.0	2.20	0.00045	2.5	4.7	6.0
01086	836201	1LA7 080-2YC60	80	1.20	0.90	1.05	4.00	2.00	3400	68.0	2.51	0.00085	2.3	4.9	8.4
01087	836276	1LA7 080-2YA60	80	1.50	1.12	1.15	5.30	2.65	3370	69.0	3.17	0.00085	1.8	3.7	8.4
01088	836202	1LA7 082-2YA60	80	1.80	1.34	1.05	5.80	2.90	3450	72.4	3.72	0.0011	2.1	5.3	10.0
01089	836278	1LA7 083-2YA60	80	2.00	1.50	1.15	6.20	3.10	3410	74.0	4.18	0.0011	3.3	6.3	10.0
01090	836203	1LA7 090-2YC60	90	2.40	1.79	1.05	7.00	3.50	3460	79.0	4.94	0.0015	2.4	5.5	11.7
01091	836279	1LA7 090-2YA60	90	3.00	2.20	1.15	9.00	4.50	3490	76.0	6.12	0.0015	2.7	5.7	13.7
01092	836204	1LA7 094-2YA60	90	3.60	2.70	1.05	10.80	5.40	3460	79.0	7.41	0.0020	2.7	6.0	14.9
01093	836281	1LA7 096-2YA60	90	4.00	3.00	1.15	12.20	6.10	3440	82.0	8.20	0.0020	2.3	5.9	15.0
01094	836206	1LA7 112-2YA60	112	5.00	3.73	1.15	16.00	8.00	3480	71.1	10.24	0.0055	2.0	5.2	28.0
01095	836207	1LA7 113-2YA60	112	6.60	4.92	1.05	19.00	9.50	3480	79.0	13.51	0.0055	2.6	6.8	30.8
01096	836283	1LA7 114-2YA60	112	7.50	5.60	1.15	21.80	10.90	3500	77.4	15.27	0.0055	2.0	5.8	33.4
01097	836284	1LA7 130-2YA70	132S/M	10.00	7.50	1.15	28.00	14.00	3520	79.0	20.50	0.016	2.4	6.0	50.0
01098	836212	1LA7 131-2YA70	132S/M	12.00	9.00	1.05	32.00	16.00	3525	80.0	24.60	0.021	2.7	6.8	52.5
01099	836285 836286	1LA7 132-2YA70	132S/M	15.00	11.20	1.15	41.00 53.00	20.50 26.50	3520	80.5	30.70	0.021	2.0	6.5	56.5 69.5
01100		1LA5 163-2YB70	160M/L	20.00	14.90	1.05	70.00		3528	87.0	40.39	0.034	2.0		
01101	836224	1LA5 164-2YB70	160M/L	25.00	18.70	1.15		35.00	3530	88.0	50.46	0.040	2.1	5.0	82.5
01102	836230	1LA5 167-2YB70	160M/L	30.00	22.40	1.05	81.00	40.50	3540	90.0	60.38	0.052	2.1	4.6	94.0
Motors	e de alta	eficiencia (Eficie	nciae eur	neriores	aF-D Ac	+									
Motore	s ue arta	enciencia (Encie	licias suj	Jerrores	al-i Ac										
01103	856235	1LA4 183-2YC80	180M	35	26.1	1.05	87	43.5	3540	89.0	70.44	0.077	2.5	6.6	160.5
01104	856242	1LA4 184-2YA80	180M	40	29.8	1.05	102	51.0	3510	90.5	81.19	0.077	2.3	6.4	162.0
01105	856248	1LA4 206-2YC80	200L	50	37.3	1.15	124	62.0	3530	90.0	100.91	0.14	2.4	6.6	235.0
01106	856250	1LA4 207-2YA80	200L	60	44.5	1.15	148	74.0	3545	91.0	120.58	0.16	2.4	6.5	260.0
01107	856275	1LA6 224-2YC80	225M	75	55.5	1.15	188	94.0	3540	93.4	150.94	0.24	1.8	6.8	320.0
26690	843275	1LA6 258-2BB90-Z	250M	100	75.0	1.2	240	120.0	3558	93.9	201.00	0.45	2.5	7.5	490.0
26691	843210	1LA6 280-2AC60	280S	125	93.0	1.0	-	143.6	3570	94.3	241.00	0.79	2.7	7.0	570.0
26692	843212	1LA6 283-2AC60	280M	150	112.0	1.0	-	169.7	3570	94.7	289.00	0.92	2.7	7.0	610.0
26693	843218	1LA6 310-2AC60	315S	185	138.0	1.0	-	212.3	3576	94.8	353.00	1.3	2.8	7.0	790.0
26694	843220	1LA6 313-2AC60	315M	225	168.0	1.0	-	257.4	3576	95.1	423.00	1.5	2.8	7.0	850.0
26695	843225	1LA6 316-2AC90-Z	315L	275	205.0	1.1	-	309.9	3576	95.5	513.00	1.8	2.8	7.0	990.0
26696	843230	1LA6 317-2AC90-Z	315L	325	242.0	1.1	-	360.7	3580	96.0	641.00	2.3	2.8	7.0	1100.0

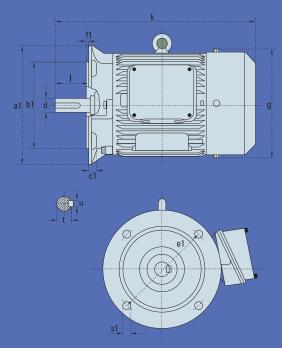

Generalidades


Veloci	dad 180	0 rpm (4 polos)													
Código Actual	Código Antiguo	Tipo	Frame IEC	HP	kW	F.S.	In 220 V Amp.	a 440 V Amp.	rpm	Eficiencia η %	Torque nominal Nm	Momento de inercia Kg m2	1 1		Peso aprox. kg
01108	836440	1LA7 070-4YC60	71	0.40	0.29	1.05	1.6	0.80	1640	66.0	1.74	0.0006	1.8	2.8	4.7
01109	836472	1LA7 070-4YA60	71	0.50	0.37	1.15	1.9	0.95	1590	66.0	2.20	0.0006	1.3	2.7	5.5
01110	836460	1LA7 071-4YA60	71	0.60	0.45	1.05	2.2	1.10	1645	69.0	2.60	0.0008	1.8	3.4	6.0
01111	836473	1LA7 073-4YA60	71	0.75	0.56	1.15	2.9	1.45	1650	65.0	3.30	0.0008	1.9	3.7	6.0
01112	836490	1LA7 080-4YC60	80	0.90	0.67	1.05	3.1	1.55	1675	68.0	3.83	0.0015	2.3	4.4	8.1
01113	836474	1LA7 080-4YA60	80	1.00	0.75	1.15	3.5	1.75	1660	69.2	4.29	0.0015	1.9	3.7	8.1
01114	836401	1LA7 081-4YA60	80	1.20	0.90	1.05	4.0	2.00	1675	70.0	5.10	0.0018	2.2	3.7	9.3
01115	836476	1LA7 083-4YA60	80	1.50	1.12	1.15	5.0	2.5	1650	72.0	6.48	0.0018	1.8	3.0	9.3
01116	836402	1LA7 090-4YC60	90	1.80	1.34	1.05	6.4	3.2	1700	77.0	7.54	0.0028	2.4	5.2	11.9
01117	836478	1LA7 090-4YA60	90	2.00	1.50	1.15	7.0	3.5	1700	77.0	8.38	0.0028	2.2	4.4	12.1
01118	836403	1LA7 094-4YA60	90	2.40	1.79	1.05	7.4	3.7	1690	77.0	10.12	0.0035	2.0	4.5	14.9
01119	836479	1LA7 096-4YA60	90	3.00	2.20	1.15	9.6	4.8	1708	79.0	12.51	0.0035	1.8	3.6	14.9
01120	836404	1LA7 111-4YA60	112	4.00	3.00	1.15	13.0	6.5	1750	76.3	16.28	0.0048	2.2	5.6	27.1
01121	836406	1LA7 112-4YA60	112	5.00	3.73	1.15	15.8	7.9	1750	80.5	20.36	0.0058	2.3	6.5	28.7
01122	836407	1LA7 113-4YA60	112	6.60	4.92	1.05	19.6	9.8	1745	78.0	26.95	0.011	2.0	6.0	31.0
01123	836483	1LA7 114-4YA60	112	7.50	5.60	1.15	23.2	11.6	1740	80.0	30.71	0.011	2.2	5.6	32.7
01124	836484	1LA7 131-4YA70	132S/M	10.00	7.50	1.15	28.8	14.4	1750	81.0	41.50	0.018	2.3	6.0	46.5
01125	836412	1LA7 133-4YA70	132S/M	12.00	9.00	1.05	34.0	17.0	1750	81.2	49.50	0.024	2.5	6.6	49.0
01126	836485	1LA7 134-4YA70	132S/M	15.00	11.2	1.15	43.0	21.5	1750	82.5	62.00	0.024	1.8	5.0	62.0
01127	836486	1LA5 164-4YB70	160 M/L	20.00	14.9	1.15	53.0	26.5	1760	85.0	80.96	0.040	1.8	6.3	77.5
01128	836487	1LA5 167-4YC70	160 M/L	25.00	18.7	1.15	64.0	32.0	1755	89.0	101.5	0.052	1.8	5.4	85.5
Motore	s de alta	eficiencia (Eficier	l icias sur	oeriores	a E- P A	.ct.)									
01129	856431	1LA4 183-4YA80	180M	30	22.4	1.05	78	39.0	1755	90.7	121.8	0.13	2.0	4.9	170
01130	856436	1LA4 186-4YA80	180L	36	26,8	1.05	93	46.5	1760	91.3	146.7	0.15	2.8	6.8	190
01131	856440	1LA4 187-4YA80	180L	40	29.8	1.05	104	52.0	1750	91.3	162.8	0.15	2.0	5.6	190
01132	856448	1LA4 207-4YC80	200L	50	37.3	1.15	126	63.0	1760	91.3	202.4	0.24	2.7	6.8	250
01133	856450	1LA6 220-4YA80	225S	60	44.5	1.15	148	74.0	1765	96.2	242.2	0.44	2.7	6.6	314
01134	856475	1LA6 224-4YC80	225M	75	56.0	1.15	188	94.0	1780	92.7	300.2	0.52	2.0	5.1	321
26697	843475	1LA6 258-4BA90-Z		100	75.0	1.20	240	120.0	1780	94.0	402	0.79	2.7	7.1	495
26698	843410	1LA6 280-4BA90-Z		125	93.0	1.05	290	145.0	1785	94.7	482	1.4	2.3	6.2	610
26699	843412	1LA6 283-4BA90-Z		150	112.0	1.00	355	177.5	1785	94.9	589	1.6	2.7	7.4	660
26700	843418	1LA6 310-4AA60	315S	185	138.0	1.00	-	222.2	1783	94.8	707	2.2	2.5	6.7	830
26701	843420	1LA6 313-4AA60	315M	225	168.0	1.00	-	265.2	1783	95.5	848	2.7	2.7	7.2	910
26702	843425	1LA6 316-4AA90-Z		275	205.0	1.10	-	323.1	1783	95.6	1030	3.2	2.6	7.0	1060
26703	843430	1LA6 317-4AA90-Z	315L	350	261.0	1.10	-	409.5	1785	96.2	1280	4.2	2.7	7.0	1200

Veloci	dad 120	0 rpm (2 polos)													
Código	Código	Tipo	Frame	HP	kW	F.S.	In	a	rpm	Eficiencia	Torque	Momento	Torque	Intensidad	Peso
Actual	Antiguo		IEC				220 V	440 V		η	nominal	de inercia	de arranq	ue como fac.	aprox.
							Amp.	Amp.		%	Nm	Kg m2	de Tn	de In	kg
01135	836640	1LA7 072-6YA60	71	0.40	0.29	1.05	1.60	0.80	1090	65.0	2.61	0.0006	2.3	4.9	5.7
01136	836672	1LA7 073-6YA60	71	0.50	0.37	1.15	2.20	1.10	1020	61.0	3.70	0.0009	1.5	2.0	5.7
01137	836660	1LA7 080-6YC60	80	0.60	0.45	1.05	2.40	1.20	1080	63.0	3.96	0.0015	1.8	2.7	8.5
01138	836673	1LA7 080-6YA60	80	0.75	0.56	1.15	3.30	1.65	1075	62.0	4.97	0.0015	1.5	2.0	8.5
01139	836690	1LA7 082-6YA60	80	0.90	0.66	1.05	3.60	1.80	1080	66.0	5.94	0.0018	1.9	3.1	10.5
01140	836674	1LA7 083-6YA60	80	1.00	0.74	1.15	4.20	2.10	1090	67.0	6.54	0.0018	2.6	4.0	10.5
01141	836601	1LA7 090-6YC60	90	1.20	0.90	1.05	5.20	2.60	1135	67.0	7.53	0.0028	2.0	3.2	11.9
01142	836676	1LA7 090-6YA60	90	1,50	1.12	1.15	6.60	3.30	1110	69.0	9.63	0.0028	2.0	3.4	12.0
01143	836678	1LA7 096-6YA60	90	2.00	1.50	1.15	7.80	3.90	1100	72.0	12.95	0.0035	2.7	6.0	14.9
01144	836679	1LA7 112-6YA60	112	3.00	2.20	1.15	11.80	5.90	1150	72.1	18.59	0.011	1.9	4.0	26.7
01145	836681	1LA7 113-6YA60	112	4.00	3.00	1.15	15.00	7.50	1150	76.8	24.78	0.011	2.0	4.5	29.6
01146	836606	1LA7 130-6YA70	132S/M	5.00	3.73	1.15	16.40	8.20	1150	78.5	31.00	0.015	1.8	4.6	40.5
01147	836683	1LA7 133-6YA70	132S/M	7.50	5.60	1.15	26.00	13.00	1150	78.0	47.00	0.019	1.8	5.1	54.0
01148	836684	1LA7 135-6YA70	132S/M	10.00	7.50	1.05	33.00	16.50	1150	80.5	62.00	0.025	1.9	5.2	60.0
01149	836685	1LA5 164-6YB70	160M/L	15.00	11.20	1.05	44.00	22.00	1150	85.0	92.93	0.041	2.0	5.9	73.5
01150	836686	1LA5 167-6YC70	160M/L	20.00	14.90	1.05	60.00	30.00	1170	86.0	121.8	0.049	1.8	5.0	89.5
Motore	s de alta	eficiencia (Eficie	ncias suj	periores	a E-P A	ct.)									
01151	856624	1LA4 186-6YA80	180L	25	18.7	1.05	67.5	33.8	1170	88.0	152.2	0.2	2.6	5.6	180
01152	856625	1LA4 206-6YA80	200L	30	22.4	1.05	79.0	39.5	1175	89.0	181.9	0.29	2.3	5.4	240
01153	856630	1LA4 207-6YA80	200L	36	26.8	1.05	95.0	47.5	1175	89.0	218.3	0.33	2.6	5.6	255
01154	856650	1LA6 223-6YC80	225M	50	37.3	1.15	124.0	62.0	1170	92.0	304.5	0.57	2.4	5.8	315
26704	843606	1LA6 253-6AA60	250M	60	45	1.10	-	73.9	1176	92.4	361	0.89	2.1	6.0	410
26705	843608	1LA6 280-6AA60	2805	75	56	1.05	-	91.7	1178	93.0	438	1.3	2.3	6.0	540
26706	843609	1LA6 283-6AA60	280M	100	75	1.00	-	121.7	1180	93.0	534	1.5	2.4	6.2	580
26707	843610	1LA6 310-6AA60-Z		125	93	1.10	-	151.6	1185	93.8	725	2.4	2.5	6.2	770
26708	843612	1LA6 313-6AA60-Z		150	112	1.10	-	181.3	1185	94.2	870	2.9	2.5	6.2	830
26709	843618	1LA6 316-6AA90-Z		175	131	1.10	-	210.4	1185	94.7	1060	3.5	2.5	6.6	970
26710	843620	1LA6 317-6AA90-Z	315L	200	149	1.10	-	239.7	1183	94.7	1280	4.3	2.2	6.6	1060
26711	843625	1LA6 318-6AA60	315L	250	187	1.05	-	299.3	1185	95.0	1550	4.9	2.3	6.6	1100

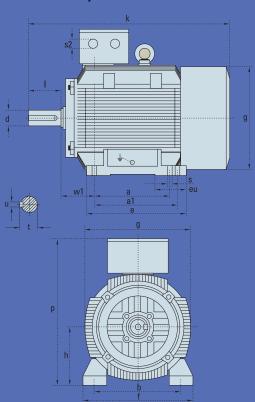
Medic	idas para montaje																							
Motor tamaño								medidas de la forma constructiva IM B3										Medidas de la forma constructiva IM B5 / IM B35						
	1	d	t	u	g	g ₁	p/p ₂	k	a	b	h	W ₁	S	е	f	a1	b1	c1	e1	f1	s1	k		
071	30	14	16.1	5	148	-	178.5	240	90	112	71	45	7	107.5	132	160	110	5.5	130	3.5	10.5	231		
080	40	19	21.5	6	163	-	193.5	273.5	100	125	80	50	9.5	119.5	150	200	130	8	165	3.5	13	283		
090 S	50	24	26.9	8	181	-	211.5	331	100	140	90	56	10	114.5	165	200	130	7	165	3.5	13	324		
090 L	50	24	26.9	8	181	-	211.5	331	125	140	90	56	10	144.5	165	200	130	7	165	3.5	13	324		
112 M	60	28	31.0	8	227	-	260	393	140	190	112	70	12	176	226	250	180	11	215	4	14.5	388		
132 S	80	38	41.3	10	264.5	-	315	481	140	216	132	89	12	1218	256	300	230	14	265	4	15	481		
132 M	80	38	41	10	266	-	299	491	178	216	132	89	12	218	226	300	230	12	265	4	4.5	491		
160 M	110	42	45.0	12	320	-	365.5	629	210	254	160	109	15	300	300	350	250	20	300	5	18	628		
160 L	110	42	45.0	12	320	-	365.5	629	254	254	160	109	15	300	300	350	250	20	300	5	18	628		
180 M	110	48	51.5	14	357	499	410	653	241	279	180	121	16	301	339	350	250	13	300	5	18	653		
180 L 200 L	110	48	51.5 59.0	14 16	357 403	499 534	410	691	279 305	279 318	180	121	16	339 385	339 398	350 400	250 300	13 15	300 350	5 5	18 18	691		
200 L 225 S	*140	*60	*64	18	447	554	460 569	743 *830	286	356	200	133 149	20 19	361	436	450	350	16	400	5 5	17.5	743 *830		
225 S 225 M	*140	*60	*64	18	447	_	569	*830	311	356	225	149	19	361	436	450	350	16	400	5 5	17.5	*830		
250 M	140	*65	*69	18	520	_	680	930	349	406	250	168	24	409	506	550	450	18	500	5	17.5	930		
280 S	140	*75	*79.5	*20	575	_	735	1005	368	457	280	190	24	479	557	550	450	18	500	5	17.5	1005		
280 M	140	*75	*79.5	*20	575	_	735	1005	419	457	280	190	24	479	557	550	450	18	500	5	17.5	1005		
315 S ¹⁾	140	65	69	18	645	-	-	1110	406	508	315	216	28	527	628	660	550	22	600	6	22	1110		
315 S ²⁾	170	85	85	22	_	_	_	1140	_	_	_	_	_	_	_	_	_		_	_	_	1140		
315 M ¹⁾	140	65	69	18	645	_	_	1110	406	508	315	216	28	527	628	660	550	22	600	6	22	1110		
315 M ²⁾	170	80	85	22	-	-	-	1140	-	-	-	-	-	-	-	-	-	-	-	-	_	1140		
315 L ¹⁾	140	65	69	18	645	_	-	1250	508	508	315	216	28	578	628	660	550	22	600	6	22	1250		
315 L ²⁾	170	80	85	22	_	_	_	1280	-	_	_	-	_	-	-	_	-	_	_	_	_	1280		


Tamaños 71 a 160

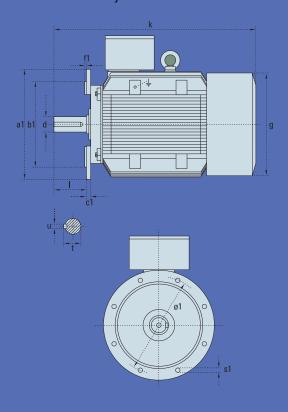


Tamaños 180 a 200

Ejecución IM B3



Ejecución IM B5



Tamaños 225 a 315

Ejecución IM B3

Ejecución IM B5

^{*} Para motores de dos polos cambian las siguientes medidas: Tamaño constructivo 225 M: I=110; d=55; t=59; u=16 mm.; k=800....... Tamaño constructivo 280 S: d=65; t=69; u=18 mm. 1) Motores de dos polos 2)

Generalidades